
6-2244-2eBookFM.book Page 1 Thursday, December 15, 2005 5:22 PM

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2006 by Don Jones and Jeffery Hicks

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Control Number 2005937886

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 9 8 7 6 5

Distributed in Canada by H.B. Fenn and Company Ltd.
A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press Inter-
national directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to
mspinput@microsoft.com.

Microsoft, Active Directory, ActiveX, Excel, FrontPage, JScript, Microsoft Press, MSDN, Tahoma, Verdana,
Visio, Visual Basic, Win32, Windows, the Windows logo, Windows NT, and Windows Server are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-
out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly
by this book.

Acquisitions Editor: Martin DelRe
Project Editor: Melissa von Tschudi-Sutton
Production: OTSI

Body Part No. X11-89440

6-2244-2eBookFM.book Page ii Thursday, December 15, 2005 5:22 PM

iii

Contents at a Glance

Part I The Basics of Advanced Windows Scripting
1 Getting Started. .3

2 Script Security. 41

Part II Packaging Your Scripts
3 Windows Script Files . 57

4 Windows Script Components. 95

5 HTML Applications: Scripts with a User Interface. 125

Part III The Basics of Advanced Windows Scripting
6 Remote Scripting . 161

7 Database Scripting . 179

8 Advanced ADSI and LDAP Scripting . 207

9 Using ADO and ADSI Together . 245

10 Advanced WMI Scripting . 261

11 WMI Events . 285

12 Better Scripting with WMI Tools . 319

13 Advanced Scripting in Windows XP and Windows Server 2003. 353

Part IV Scripting for the Enterprise
14 Group Policy Management Scripting . 393

15 Exchange 2003 Scripting. 425

16 Microsoft Operations Manager 2005 Scripting. 463

17 Virtual Server 2005 Scripting . 483

Part V Appendix
Advanced Script Editor Features . 505

6-2244-2eBookFM.book Page iii Thursday, December 15, 2005 5:22 PM

iv Table of Contents

6-2244-2eBookFM.book Page iv Thursday, December 15, 2005 5:22 PM

v

Table of Contents

Acknowledgements . xiii

Introduction .xv

Part I The Basics of Advanced Windows Scripting

1 Getting Started. .3

Prerequisite Knowledge. 3

Understanding Windows Script Host Basics. 4

Using the FileSystemObject Library . 15

Understanding Arrays . 22

Understanding Active Directory Services Interface Fundamentals 24

Understanding Windows Management Instrumentation Fundamentals 29

Advanced Scripting Goals . 34

Securing Your Scripts . 34

Creating Your Own Script Components and Libraries . 34

Running Scripts Remotely . 35

Retrieving Information from Active Directory . 35

Manipulating Information Stored in a Database. 35

Managing Your Windows Environment with WMI Events 35

Using New WMI Classes with Windows XP and Windows Server 2003 35

Managing Group Policy Objects with Scripting. 35

Managing Your Exchange 2003 Environment . 36

Incorporating Your Scripts into Microsoft Operations Manager 36

Creating a Visual Interface for Your Script with Internet Explorer and 36

HTML Applications (HTAs)

What We Won’t Cover . 36

Finding Information about JScript, Perl, Python, and KiXtart 37

The Right Tool for the Job. 38

Scripting Techniques . 39

Summary . 39

2 Script Security. 41

Script Encoding and Decoding. 41

6-2244-2eBookFM.book Page v Thursday, December 15, 2005 5:22 PM

vi Table of Contents

Script Signing and the Windows Script Host TrustPolicy . 43

Understanding Digital Certificates and Script Signing 43

Understanding WSH TrustPolicy . 46

Configuring WSH TrustPolicy in Your Environment . 47

Signing Scripts by Using a Digital Certificate . 49

Using Software Restriction Policies . 52

Alternate Credentials . 52

Using the RunAs Command . 52

Using Scheduled Tasks Credentials . 53

Using ADSI Alternate Credentials . 53

Using WMI Alternate Credentials . 54

Summary . 54

Part II Packaging Your Scripts

3 Windows Script Files . 57

Defining Windows Script Files . 57

Understanding XML. 58

The package Tag . 59

The comment Tag . 59

The job Tag . 59

The runtime Tag . 60

The description Tag . 60

The example Tag . 60

The named Tag . 61

The object Tag . 61

The script Tag . 62

Creating Script Jobs. . 63

Including Other Scripts . 63

Adding Resources . 63

Creating Examples and Help Text . 64

Using Named Parameters . 65

The name Property . 65

The helpstring Property . 65

The type Property . 66

The required Property . 66

Viewing a Windows Script File in Action . 67

6-2244-2eBookFM.book Page vi Thursday, December 15, 2005 5:22 PM

Table of Contents vii

Converting an Existing Script to a WSF Utility .72

Creating and Using a Wrapper WSF . 83

Summary . 94

4 Windows Script Components. 95

Understanding COM Objects, Methods, and Properties . 95

Understanding Windows Script Components . 96

Using the Script Component Wizard. 101

Working with Properties . 105

Working with Methods . 107

Working with Events . 108

Creating a Windows Script Component with a Script Editor. 112

Viewing a Windows Script Component in Action . 120

Summary . 124

5 HTML Applications: Scripts with a User Interface. 125

Understanding HTML Applications . 125

Understanding the Internet Explorer Document Object Model 129

Understanding the HTML Document Hierarchy . 130

Understanding HTML Events . 131

Putting the DOM to Work . 132

Preparing Your HTA . 133

Using a Script Rather than an HTA . 133

Getting the Script Ready for an HTA. 138

Understanding HTA Requirements and Essentials. 140

Using HTA Tags . 141

Sizing an HTA . 143

Using <div> and Tags. 144

Using Inline Frames . 145

Working with Forms and Fields . 147

Populating a List Box . 148

Creating Buttons. 149

Connecting a Button to a Script . 149

Using Check Boxes and Radio Buttons . 150

Adding Graphics. 151

Adding Subroutines and Functions . 151

Viewing HTAs in Action 152

Summary . . . 157

6-2244-2eBookFM.book Page vii Thursday, December 15, 2005 5:22 PM

viii Table of Contents

Part III The Basics of Advanced Windows Scripting

6 Remote Scripting . 161

Understanding Remote Scripting and Security . 162

Connectivity . 162

Identity . 165

Permissions . 165

Context . 167

Working with Windows Firewall . 170

Understanding Remote Scripting Objects . 171

Understanding Remote Scripting Methods . 172

Viewing Remote Scripting in Action . 175

Summary . 177

7 Database Scripting. 179

Understanding ActiveX Data Objects . 179

Understanding Connection Objects . 181

ODBC DSN Connections. 182

Connection Strings . 184

Understanding Recordset Objects . 185

Forward-Only Recordsets . 186

Other Types of Recordsets . 187

Recordset Tips and Tricks . 189

Understanding Command Objects . 191

Understanding the Differences Between Databases . 195

Text Files . 195

Excel Workbooks . 195

Access Databases . 196

SQL Server Databases . 196

Understanding SQL . 197

Queries that Return Results . 197

Queries that Make Changes. 200

Viewing ActiveX Data Objects . 202

Summary . 206

8 Advanced ADSI and LDAP Scripting . 207

Using the ADSI Scriptomatic . 207

Connecting to a Domain . 209

6-2244-2eBookFM.book Page viii Thursday, December 15, 2005 5:22 PM

Table of Contents ix

Creating Objects . 210

Retrieving Object Information . 211

Using Other ADSI Tools . 217

Using the ADSI Software Development Kit . 217

Using the PrimalScript Professional ADSI Wizard . 225

Writing Active Directory Queries 226

Using Search Filters . 227

Using Data Return Limits. 227

Scripting the WinNT Provider. . . . 230

Scripting Active Directory Security . . . 240

Summary . . . 243

9 Using ADO and ADSI Together . 245

Understanding the ADSI Provider for ADO . . . 246

Connecting to ADSI by Using ADO . 247

Treating Active Directory as a Database . 248

Writing ADSI Queries to Retrieve Information. . . . 251

Writing ADSI Queries to Make Changes 254

Viewing ADO and ADSI in Action . . . 256

Summary . . . 260

10 Advanced WMI Scripting . 261

Understanding Advanced WQL . . . 262

Selecting Specific Properties. 262

Including a WHERE Clause . 263

Using the LIKE Operator . 265

Using Queries and associator Classes . . . 267

Understanding Associations . 267

Writing Association Queries . 268

Using Reference Queries . 273

Using Advanced WMI Security Techniques . . . 273

Using the AuthenticationLevel Property . 274

Using the ImpersonationLevel Property . 274

Using the Privileges Property . 275

Viewing Advanced WMI Scripting in Action . . . 276

Summary . . . 283

11 WMI Events . 285

Understanding WMI Events . . . 285

6-2244-2eBookFM.book Page ix Thursday, December 15, 2005 5:22 PM

x Table of Contents

Understanding Consumers. 286

Understanding Notification Queries. 286

Understanding Filters . 287

Understanding Polling . 287

Using Notification Queries . 288

Using WBEMTest . 288

Executing a Notification Query Semisynchronously . 291

Executing a Notification Query Asynchronously . 294

Using Event Sinks. 294

Using WMI Tools . 300

Using WMI Event Registration. 300

Using WMI Event Viewer . 305

Viewing WMI Events in Action. 308

Summary . 317

12 Better Scripting with WMI Tools . 319

Using Tools as a Scripting Shortcut. 319

Using Scriptomatic. 320

Listing Classes and Namespaces . 320

Generating Scripts . 324

Saving Scripts . 325

Using WMIC . 325

Connecting to Namespaces . 326

Using Aliases. 326

Connecting to Remote Systems. 332

Passing Credentials . 332

Making Queries with list and get. 333

Formatting Output . 334

Scripting with WMIC . 337

Enumerating Instances . 343

Using WBEMTest . 341

Connecting to a Namespace . 341

Using WMI Tools . 343

Using CIM Studio . 343

Using WMI Object Browser . 347

Comparing WMI Wizards . 349

Summary . 351

6-2244-2eBookFM.book Page x Thursday, December 15, 2005 5:22 PM

Table of Contents xi

13 Advanced Scripting in Windows XP and Windows Server 2003. 353

Using New and Discontinued WMI Classes . . . 355

Using the Win32_PingStatus Class 356

Configuring the Windows Firewall. . . . 359

Using Disk Quota Management. . . . 364

Using the DNS Provider. . . . 365

Using Active Directory Replication and Trusts 371

Using Internet Information Services 6.0 . 374

Managing Printing . 381

Using Windows Update Services . 385

Summary . . . 389

Part IV Scripting for the Enterprise

14 Group Policy Management Scripting . 393

Introducing Group Policy Management Scripting . . . 394

Group Policy Management Scripting Requirements. 394

Group Policy Management Console Object Model . 394

Scripting GPO Permissions . . . 407

Scripting GPO Reports 411

Scripting GPO Backups . . . 412

Scripting GPO Restores . . . 412

Scripting Resultant Set of Policy. . . . 413

Viewing GPO Scripting in Action 414

Summary . . . 423

15 Exchange 2003 Scripting. 425

Introducing Exchange Scripting 425

Querying Active Directory . . . 426

Understanding Exchange 2003 WMI Classes . 432

Scripting the Exchange Server State Class . . . 435

Scripting Exchange Storage Groups . . . 436

Scripting Exchange Mailboxes . . . 441

Viewing Exchange Server Scripting in Action . . . 454

Summary . . . 462

16 Microsoft Operations Manager 2005 Scripting. 463

Introducing MOM Scripting . 464

Adding Scripts. 466

6-2244-2eBookFM.book Page xi Thursday, December 15, 2005 5:22 PM

xii Table of Contents

Defining Script Parameters. 467

Using Run Time Scripting Objects. 468

Understanding Script Tracing and Debugging . 473

Using Scripts in MOM . 473

Using Response Scripts . 473

Using Timed Scripts. 474

Using State Variable Scripts . 474

Using Discovery Scripts. 476

Customizing MOM Scripts . 478

Viewing MOM Scripting in Action . 479

Summary . 482

17 Virtual Server 2005 Scripting . 483

Introducing Virtual Server Scripting . 484

Understanding the Virtual Server Object Model . 486

Writing Provisioning Scripts . 488

Writing Management Scripts . 490

Obtaining Object References . 491

Managing Multiple-Virtual-Machines Templates . 491

Performing Virtual Machine Tasks. 492

Performing Virtual Disk Tasks . 496

Performing Guest OS Tasks . 497

Performing Mouse and Keyboard Tasks. 498

Viewing Virtual Server Scripting in Action. 498

Summary . 501

Part V Appendix

Advanced Script Editor Features . 505

Index. 521

6-2244-2eBookFM.book Page xii Thursday, December 15, 2005 5:22 PM

xiii

Acknowledgements

I’d like to thank Jeffery, who has easily been one of the best co-authors anyone could ask for.
Writing a book can be exceedingly stressful and time-consuming, and a good co-author can
really help alleviate a lot of that. Thanks also go out to everyone at SAPIEN Technologies:
Jonathan, Alex, and Ferdinand, who provided assistance with tools and technologies that
were ancillary to the book’s main purpose, making things much smoother. Finally, a big cheer
is due all the users at ScriptingAnswers.com, whose persistence and unwavering support of
the scripting community were a primary motivation for bringing this book to market.

Don Jones
Las Vegas, NV

Writing your first book can be a daunting and sometimes frightening task. Fortunately, I had
a great writing partner. Thanks, Don, for being such a terrific guide in the strange new world
of publishing. Thanks, too, to the people at Visory Group. I truly appreciate the flexibility you
give me to take on projects like this one. Finally, I want to say an extra big thank-you to Beth,
Lucas, and Ellie. Without the love, support, and understanding of my new family (“Daddy has
to work again tonight?”), I would never have made it this far. You’re the reason I work so hard.

Jeffery Hicks
Syracuse, NY

6-2244-2eBookFM.book Page xiii Thursday, December 15, 2005 5:22 PM

6-2244-2eBookFM.book Page xiv Thursday, December 15, 2005 5:22 PM

xv

Introduction

When writing my first scripting book, Managing Windows with VBScript and WMI (Addison-
Wesley, 2004), I set out to create what was at the time an industry first: a book designed not
for developers but specifically for Microsoft Windows administrators with very little VBScript
experience who wanted to learn just enough VBScript to be effective. Since that book was
published, Windows administrators have become more and more skilled with Windows
Script Host, VBScript, Windows Management Instrumentation, and other related technolo-
gies. Because administrators attending conferences and viewing my Web site (http://
www.ScriptingAnswers.com) are beginning to ask questions about more complex technologies
and techniques, the time has come for a book that covers advanced topics.

In this book, my able co-author, Jeffery Hicks, and I try to cover some of the more advanced
scripting techniques that we use every day. We certainly aren’t pretending that we touch on
every topic that might be considered “advanced”; after all, scripting is as varied and complex
as Microsoft Windows itself. Instead, we try to cover the most useful advanced technologies,
recognizing that our fellow administrators are typically as practical and pragmatic as we are.
We also try to cover these technologies in much the same way that we learned about them,
by presenting complete solutions and line-by-line walkthroughs, so that you can see the final
product as well as a detailed description of how and why it works.

Personally, I’m delighted that Windows is now such a mature, stable product that we have the
time and tools to explore automation through scripting. I’m also glad that more administra-
tors are tackling advanced topics, which tells me that Windows has truly become an enter-
prise operating system, with the level of complexity and scriptability often associated with
traditional enterprise-class operating systems such as UNIX.

Jeffery and I both appreciate that you’ve selected this book for your further scripting educa-
tion. We certainly hope you find it useful! That said, we want to offer a brief word of caution:
This is truly an advanced book. We don’t take the time to explain basic scripting concepts,
and we assume that you already have medium- to high-level scripting skills. We do cover a few
basics at the beginning of the book, but only to provide a quick refresher of techniques you
might not use every day.

With that caveat out of the way, I want to wish you the best of luck with your scripting efforts!

Don Jones

6-2244-2eBookFM.book Page xv Thursday, December 15, 2005 5:22 PM

xvi Introduction

Who Is This Book For?
This book is intended for Microsoft Windows administrators who want to take their scripting
to the next level. We’re assuming readers have intermediate to advanced scripting skills and
are looking for new techniques and ideas to expand their scripting toolbox. This book is also
for scripting administrators who want to expand their realm into products such as Microsoft
Exchange 2003 and Microsoft Virtual Server 2005. If you’ve never worked with VBScript
before, then this book definitely isn’t for you. We’re not spending much time on the basics,
and you’ll certainly need those basics to understand what we’re covering here. If you’d like a
more introductory-level book, consider Don Jones’ Managing Windows with VBScript and
WMI (Addison-Wesley, 2004) or a similar title.

Conventions in This Book
This book is relatively straightforward, and there are no tricky conventions that readers need
to be aware of. However, the following reader alerts are used throughout the book to point out
useful information:

System Requirements
To use the Advanced VBScript for Microsoft Windows Administrators companion CD, you’ll need
a computer equipped with the following configuration:

■ Pentium II (or similar) with 266-megahertz (MHz) or higher processor.

■ CD-ROM or DVD-ROM drive.

■ Microsoft Mouse or compatible pointing device.

■ Microsoft Windows Server 2003, Microsoft Windows 2000, or Microsoft Windows XP.
We assume you’ve installed the latest service packs, although in most cases we don’t
cover information specific to a given service pack (and when we do, we mention it).

■ Windows Script Host (WSH) version 5.6 or later. WSH is a core component of Windows
2000 and later versions, so unless you’ve taken special steps to remove this software, it
should already be installed.

Reader Alert Meaning

Tip Provides a helpful bit of inside information about specific tasks or functions

Note Alerts you to supplementary information

Caution Contains important information about possible data loss, breaches of security,
or other serious problems

On the CD Identifies tools or additional information available on the CD that accompanies
the book

Best Practice Identifies techniques or conventions that are recognized as industry standards;
while not following these practices won’t break anything, they can make things
easier and more efficient.

6-2244-2eBookFM.book Page xvi Thursday, December 15, 2005 5:22 PM

Introduction xvii

■ Some scripts—notably the ones dealing with Microsoft Exchange Server 2003, Microsoft
Virtual Server 2005, or Microsoft Operations Manager 2005—require additional
Microsoft products, as appropriate.

■ Microsoft Internet Explorer 5.5 or later.

■ Adobe Acrobat or Acrobat Reader.

About the Companion CD
To provide you with quick and easy access to the tools you need to get the most out of this
book, we’ve included the following on the companion CD:

■ The scripts presented in the book.

■ Links to any of the URLs we mention that are too long to type easily.

■ A number of additional tools (or links to them).

Do take a few moments to explore the CD and all it contains. If you’d like to pursue scripting
beyond the topics included in this book, we invite you to visit Don’s Web site at http://
www.ScriptingAnswers.com. You’ll find additional script samples, training, discussion forums for
questions and answers, and more resources, all designed for Windows administrative scripting.

Support for This Book
Every effort has been made to ensure the accuracy of this book and the contents of the com-
panion CD. Microsoft Press provides general support information for its books and compan-
ion CDs at the following Web site:

http://www.microsoft.com/learning/support/books

To search for book and CD corrections for this book by using the book’s ISBN, go to

http://www.microsoft.com/mspress/support/search.asp

If you have comments, questions, or ideas regarding this book or the companion CD, please
send them to Microsoft Press using either of the following methods:

E-Mail: mspinput@microsoft.com

Postal Mail:
Microsoft Press
Attn: Advanced VBScript for Microsoft Windows Administrators project editor
One Microsoft Way
Redmond, WA 98052

Please note that Microsoft software product support is not offered through the above addresses.

6-2244-2eBookFM.book Page xvii Thursday, December 15, 2005 5:22 PM

You are welcome to contact the authors at http://www.ScriptingAnswers.com to ask questions
or discuss problems that you might have regarding the scripts included on the CD that accom-
panies this book.

6-2244-2eBookFM.book Page xviii Thursday, December 15, 2005 5:22 PM

Part I
The Basics of Advanced Windows
Scripting

In this part:

Chapter 1: Getting Started .3

Chapter 2: Script Security .41

3

Chapter 1

Getting Started

In this chapter:

Prerequisite Knowledge . 3

Advanced Scripting Goals. 34

What We Won’t Cover. 36

The Right Tool for the Job . 38

Scripting Techniques . 39

Summary . 39

Before we get started, let’s take a few minutes to review some scripting basics. Without a solid
foundation in VBScript, Active Directory Services Interface (ADSI), and Windows Manage-
ment Instrumentation (WMI), many of the topics in this book might frustrate you. We’ll cover
some of the scripting fundamentals you should understand before proceeding.

Any journey worth taking requires a bit of preparation. In this book, we will be covering a lot
of ground. This chapter will help you prepare. We’ll go over some of the things you need to
already be familiar with to get the most from the material. We’ll also spend some time review-
ing some scripting fundamentals. If you are new to scripting, this overview should help you
get your bearings.

Prerequisite Knowledge
To get the most out of this book, you must have experience with scripting technologies,
terminologies, and techniques. Familiarity with the WSHShell object and error handling in
Microsoft Windows Script Host (WSH) will make your journey quite a bit easier. We include
a quick refresher, but if some of this looks new to you, we suggest going through the scripts at
the Microsoft TechNet Script Center and reading the Microsoft Windows 2000 Scripting Guide
(Microsoft Press) or Managing Windows with VBScript and WMI (Addison-Wesley). At a mini-
mum, you should download and read the Windows Script Host 5.6 documentation from the
Microsoft Web site at

http://www.microsoft.com/downloads/details.aspx?familyid=01592C48-207D-4BE1-8A76-
1C4099D7BBB9&displaylang=en

On the CD This link, like most of the links referenced in this book, is included on the
companion CD. Click Windows Script 5.6 documentation.

4 Part I: The Basics of Advanced Windows Scripting

Understanding Windows Script Host Basics

We assume you have Microsoft Windows Script Host 5.6 installed. If you aren’t sure, open a
command prompt and type cscript //logo //?. You should see something like this.

Microsoft (R) Windows Script Host Version 5.6

Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Usage: CScript scriptname.extension [option...] [arguments...]

Options:

 //B Batch mode: Suppresses script errors and prompts from displaying

 //D Enable Active Debugging

 //E:engine Use engine for executing script

 //H:CScript Changes the default script host to CScript.exe

 //H:WScript Changes the default script host to WScript.exe (default)

 //I Interactive mode (default, opposite of //B)

 //Job:xxxx Execute a WSF job

 //Logo Display logo (default)

 //Nologo Prevent logo display: No banner will be shown at execution time

 //S Save current command line options for this user

 //T:nn Time out in seconds: Maximum time a script is permitted to run

 //X Execute script in debugger

 //U Use Unicode for redirected I/O from the console

In the next sections, we’ll cover a few key WSH elements that recur in our scripts throughout
the book.

Note Many of the scripts and samples in this book require administrator privileges, either
locally or on remote systems. We assume you will be running any scripts as a local or domain
administrator. Where appropriate, we will point out how and where to use alternate credentials.

WshShell

The WshShell object offers a lot of functionality to scripting administrators. You can use it to
send a message to the user through a popup, read and write to the registry, launch other pro-
grams, and more. Let’s take a quick look at this object.

Popup
The Popup method displays a graphical message to the user, complete with buttons and icons.
One advantage to using the Popup method instead of the similar MsgBox function (discussed
later in this chapter) is that you can configure the popup window to dismiss itself automati-
cally after a specified number of seconds. This is ideal when you want to display information
to a user but you don’t want to rely on the user to click OK. Listing 1-1 illustrates the use of the
Popup method with a sample script.

Chapter 1: Getting Started 5

Listing 1-1 WshShell Popup Sample
dim wshShell

set wshShell=CreateObject("wscript.shell")

'title for popup window

strTitle="Welcome"

'compose popup message text

strMsg="Thank you for logging in." & VbCrLf

strMsg=strMsg & "It is now " & Now & VbCrLf

strMsg=strMsg & "Have a nice day."

'set time to -1 to never dismiss popup window

wshShell.Popup strMsg,7,strTitle,vbOKOnly+vbInformation

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

Notice that we use some intrinsic constants, vbOkOnly and vbInformation, as part of our
popup parameters. These constants display the OK button and the information icon, respec-
tively. These same constants are also used with the MsgBox function. You can find more infor-
mation about them in the Windows Script Host 5.6 documentation.

Registry Reading
The WshShell object is often used to read the local registry. To read or manipulate a remote reg-
istry, you must use Windows Management Instrumentation (WMI.) Assuming the user exe-
cuting the script has the appropriate permissions, you can easily read and write information
from the registry. Here is a quick example of reading owner and product information from the
local registry.

dim objShell

Set objShell=CreateObject("wscript.shell")

strRegisteredUser=objShell.RegRead("HKLM\Software\Microsoft\" &_

"Windows NT\CurrentVersion\RegisteredOwner")

strProduct=objShell.RegRead("HKLM\Software\Microsoft\Windows NT\" &_

"CurrentVersion\ProductName")

WScript.Echo strRegisteredUser & " is running " & strProduct

Program Launching
You will often need to call another script or program from your main administrative script.
Fortunately, the WshShell object makes this possible, as shown in Listing 1-2.

Listing 1-2 WshShell Run Sample
dim objShell

'Window style

Const WINDOWHIDDEN=0

Const WINDOWNORMAL=1

Const WINDOWMINIMIZE=2

Const WINDOWMAXIMIZE=3

6 Part I: The Basics of Advanced Windows Scripting

Set objShell=CreateObject("wscript.shell")

'enter in full path to command or script if not in %Systemroot%

strCommand="Notepad"

objShell.Run strCommand,WINDOWNORMAL,True

'this line won't echo until previous command finishes

WScript.Echo "Script complete"

In Listing 1-2, the important parameters are the window style and whether the command
should wait before continuing with script execution. In this example, we set up constants for
typical window styles. (Again, refer to the Windows Script Host 5.6 documentation for addi-
tional window styles.) You will likely want to run a program or script and hide it from the user.
Depending on the program or script, you can do this by setting the window type parameter to 0.

If you want execution in your main script to wait for the command to finish, set the WaitOn-
Return variable to TRUE. In Listing 1-2, the line of code that displays Script Complete won’t
execute until the command launched by the WshShell object has completed.

Another way to execute a command is with the Exec method. This technique is especially use-
ful for parsing out the results of a command-line tool or utility. Often, you might find yourself
developing a script that could use the output of another command for reporting or as param-
eters. Listing 1-3 takes the output of a Dir command that displays all executables, and modi-
fies it so that it displays only the directory name and file information. You must run this script
from a command prompt using CScript.

Listing 1-3 WshShell Exec Sample: Dir
Dim objShell,objExec

Set objShell=CreateObject("wscript.shell")

'command to Execute

strCommand="cmd /c DIR c:*.exe /s"

'text to look for in the output

strFind=".exe"

'Create Exec object

Set objExec=objShell.Exec(strCommand)

'parse output and only display lines With

'target text

Do While objExec.StdOut.AtEndOfStream<>True

 strLine=objExec.StdOut.ReadLine

 'parse out lines

 If InStr(strLine,"Directory") Then

 WScript.Echo Trim(strLine)

 Elseif InStr(strLine,strFind) Then

 WScript.Echo vbTab & strLine

 End If

Loop

Chapter 1: Getting Started 7

At run time, the script passes the specified command to the WshShell object and executes it.
The output of that command is then redirected to a new object, called objExec in our script.
With this object, we can leverage the power of StdOut and manipulate the data that would
ordinarily be written in the command prompt window. As long as the command is running,
the AtEndOfStream property will be FALSE. Because we want to display specific information
from what would generally be a lengthy output, we set a variable, strLine, to the value of the
next line of StdOut. Then we can use the InStr function to find strings of interest. If there is a
match, the line is displayed. In Listing 1-3, we want to display the directory name as well as
each line that includes the file name.

Tip With StdOut, you can use any text stream property from the FileSystemObject library,
such as ReadLine, SkipLine, and AtEndOfStream.

Listing 1-4 WshShell Exec Sample: Nslookup
Dim objShell,objExec

Set objShell=CreateObject("wscript.shell")

'command to execute

strCommand="Nslookup www.microsoft.com"

'Create Exec object

Set objExec=objShell.Exec(strCommand)

'skip lines that contain information about our DNS

'server

objExec.StdOut.SkipLine

objExec.StdOut.SkipLine

Do While objExec.StdOut.AtEndOfStream<>True

 strLine=objExec.StdOut.ReadLine

 WScript.Echo strLine

Loop

WScript.Quit

Listing 1-4 demonstrates another way to use the Exec method: executing an Nslookup com-
mand. Our script parses out the lines of interest, namely the IP address of the specified name,
and neatly displays them. The script simply skips the first two lines of any Nslookup output
that contains the DNS server name and IP address.

Tip Although not an absolute requirement, you will find it easier and neater to run scripts
that take advantage of StdOut and StdIn from the command line by using CScript. For example,
if you run the script in Listing 1-4 by double-clicking it, you will see a few blank popup win-
dows. If you run the script from a command prompt by using CScript, you will get cleaner look-
ing results.

8 Part I: The Basics of Advanced Windows Scripting

WshNetwork

The WshNetwork object exposes some basic network information for the current user, such as
the username or computer name. This object can also be used to manage printer and drive
mappings. Let’s take a quick look at this object’s functionality by incorporating it into the
script from Listing 1-1.

Listing1-5 WshNetwork Sample
dim objShell,objNetwork,collDrives

set objShell=CreateObject("Wscript.shell")

Set objNetwork=CreateObject("WScript.Network")

'title for popup window

strTitle="Welcome"

'enumerate mapped drives

strMappedDrives=EnumNetwork()

'enumerate mapped printers

strMappedPrint=EnumPrint()

'compose popup message text

strMsg=objNetwork.UserName & ", thank you for logging in to " &_

objNetwork.ComputerName & VbCrLf & vbcrlf

strMsg=strMsg & strMappedDrives & VbCrLf & VbCrLf

strMsg=strMsg & strMappedPrint & VbCrLf & VbCrLf

strMsg=strMsg & "It is now " & Now & VbCrLf

strMsg=strMsg & "Have a nice day."

'set time to -1 to never dismiss popup window

objShell.Popup strMsg,10,strTitle,vbOKOnly+vbInformation

WScript.quit

Function EnumNetwork()

On Error Resume Next

 Set colDrives = objNetwork.EnumNetworkDrives

 'If no network drives were enumerated, then inform user, else display

 'enumerated drives

 If colDrives.Count = 0 Then

 ret="There are no network drives to enumerate."

 Else

 ret = "Current network drive connections: " & vbCRLF

 For i = 0 To colDrives.Count - 1 Step 2

 ret = ret & VbCrLf & colDrives(i) & vbTab & colDrives(i + 1)

 Next

 End If

EnumNetwork=ret

End Function

Function EnumPrint()

On Error Resume Next

 Set colPrint = objNetwork.EnumPrinterConnections

Chapter 1: Getting Started 9

 'If no network printers enumerated, then inform user, else display

 'enumerated printers

 If colPrint.Count = 0 Then

 ret="There are no printers to enumerate."

 Else

 ret = "Current Printer connections: " & vbCRLF

 For i = 0 To colPrint.Count - 1 Step 2

 ret = ret & vbCRLF & colPrint(i) & vbTab & colPrint(i + 1)

 Next

 End If

EnumPrint=ret

End Function

In Listing 1-5, we customize the message to display the user name, the computer the user is
logging onto, and any mapped drives or printers. We also create an object in our script called
objNetwork, which is an instance of the WshNetwork object. With the objNetwork object, we
can build a list of mapped drives and printers by calling the EnumNetwork and EnumPrint
functions. These functions use the EnumNetworkDrives and EnumPrinterConnections methods
to create collections of mapped network drives and printers respectively, as follows.

For i = 0 To colPrint.Count - 1 Step 2

 ret = ret & vbCRLF & colPrint(i) & vbTab & colPrint(i + 1)

Next

The function then loops through the collection and lists the mapped network resources.

Back in the main part of the script, we compose the message. We personalize it by calling the
username and computername properties, as shown here.

strMsg=objNetwork.UserName & ", thank you for logging in to " &_

objNetwork.ComputerName & VbCrLf & vbcrlf

The only other addition to our display message is the information about mapped drives
and printers. The user now sees a personalized message showing all his or her mapped
drives and printers. The message appears for 10 seconds and then closes. We raised the time-
out value because there’s more to read now than in the Listing 1-1 example.

Note The username property is the user’s NT4 style or sAMAccountName attribute such as
jhicks or donj. If you want the user’s full name or display name from Active Directory, you must
add code to search for the account based on the sAMAccountName attribute.

Error Handling

Any administrative script should have some degree of error handling. Even if you develop
scripts that only you use, error handling makes them easier to develop, debug, and deploy.
You certainly don’t need to examine every single place where an error could occur, but you
should identify sections of code where an error or failure will have a significant and negative

10 Part I: The Basics of Advanced Windows Scripting

effect on your script. For example, if you are creating a log file with the FileSystemObject and
attempt to write to a drive for which the user lacks proper permissions, that code will fail. The
best approach is to catch this kind of error ahead of time and provide some meaningful feed-
back to the user, as shown in Listing 1-6.

Note The error handling we are discussing is specific to VBScript. The engine that runs our
scripts, Windows Script Host, is language independent. We could have written our scripts in
JScript and handled errors in an appropriate manner for that scripting language.

Listing 1-6 Error Handling Sample: Err
Dim objFSO,objTS

On Error Resume Next

Set objFSO=CreateObject("Scripting.FileSystemObject")

Err.clear

Set objTS=objFSO.CreateTextFile("R:\Logs\auditlog.txt")

If Err.Number<>0 Then

 strMsg="There was an error creating the log file" & VbCrLf

 strMsg=strMsg & "Error #" & Err.Number & " " & Err.Description

 WScript.Echo strMsg

 WScript.Quit

End If

'script continues from here

In Listing 1-6, we attempt to create a log file. If this attempt fails, there is no reason to continue
with the script. Before we try to capture error information, we make an Err.Clear statement. In
a short script like this it probably isn’t necessary, but in a longer and more complicated script,
calling Err.Clear removes any errors that occurred earlier in the script and were ignored. For
example, you might be creating a user object in Active Directory from new user information
stored in a text file. If one of the user attributes you want to populate is telephonenumber, but
not every new user has this attribute populated, you want the script to continue regardless
(hence the On Error Resume Next at the beginning of the script). However, when you try to set
this attribute in the script, an error is still raised. If you don’t call Err.Clear, the next time you
check for the value of Err.Number, it might return the value of the previous error. In Listing
1-6 this is a highly unlikely event—nevertheless, we wanted to be very clear about how and
when to use Err.Clear.

The actual error checking is looking for the value of Err.Number. A value of 0 indicates
success. Any value other than 0 indicates some failure or error in the previous command.
Depending on what the script was trying to accomplish, you might get a lot of error informa-
tion or a little. At a minimum, we recommend displaying the Err.Number and Err.Description
information to the user in some sort of error message. Keep in mind that not every error will
have a corresponding description. Depending on the nature of your script and the value of
Err.Number, you might add more sophisticated error handling. First intentionally induce
errors that a user might cause and make note of the error numbers and descriptions. Then use

Chapter 1: Getting Started 11

a Select Case statement to take more sophisticated steps or offer more detailed information
based on the error, as follows.

Select Case Err.Number

 Case 76

 WScript.Echo "Verify that path is available"

 Case 71

 WScript.Echo "You seem to be attempting to access a drive" &_

" that isn't ready, like a CD"

 Case 70

 WScript.Echo "You don't seem to have permission to write to" &_

" that file."

 Case Else

 WScript.echo "Error #" & Err.Number & " " & Err.Description

End Select

Of course, there is more to error handling than just the Err object. Some of the objects you
might include in your script have their own mechanisms for avoiding or detecting errors. For
example, the FileSystemObject includes the FolderExists, DriveExists, and FileExists methods.
These methods return TRUE if the item in question exists, which means you can write code
like that shown in Listing 1-7.

Listing 1-7 Error Handling Sample: FileSystemObject
On Error Resume Next

Dim objFSO,objTS

strFile="R:\logs\audit.log"

Set objFSO=CreateObject("Scripting.FileSystemObject")

If objFSO.FileExists(strFile) then

 Set objTS=objFSO.OpenTextFile(strFile)

Else

 Wscript.echo "Can’t find " & strFile

Wscript.quit

End if

'script continues

InputBox

One of the great advantages of VBScript over traditional scripting, such as batch files, is the
ability to solicit information or input from the user executing the script. This is typically done
with the InputBox function, as shown here.

Dim objFSO, objTS

strTitle="Select Text File"

strFile=InputBox("What file do you want to open?",strTitle,"C:\boot.ini")

'if value of strFile is blank then either nother was entered

'or Cancel was clicked. In either case we can't continue

If strFile="" Then WScript.Quit

Set objFSO=CreateObject("Scripting.FileSystemObject")

Set objTS=objFSO.OpenTextFile(strFile)

'script continues

12 Part I: The Basics of Advanced Windows Scripting

As you can see in this brief example, the script asks the user for a file name by using the Input-
Box function. Although the only parameter required is text to explain what the user should
enter, your script will be more user-friendly if you include a title and a default choice. The
advantage of offering a default choice is that users have a better idea of exactly what format
they should use.

After you get input, you should validate it, as we did in the code just shown. If the user clicks
Cancel or doesn’t enter anything, there is no reason to continue, so the script silently quits.
Depending on the type of information you are seeking, you might want to do further valida-
tion, such as checking the length or size of the entry. Or as Listing 1-8 shows, you can validate
the value itself.

Listing 1-8 InputBox with Menu Sample
On Error Resume Next

strTitle="Option Menu"

strMenu="Please select one of the following choices:" & VbCrLf

strMenu=strMenu & "1 - Banana Cream" & VbCrLf

strMenu=strMenu & "2 - Cherry" & VbCrLf

strMenu=strMenu & "3 - Apple Walnut" & VbCrLf

strMenu=strMenu & "4 - Peach"

rc=InputBox(strMenu,strTitle,1)

If rc="" Then WScript.Quit

Select Case rc

 Case "1"

 WScript.Echo "One slice of Banana Cream, coming up!"

 Case "2"

 WScript.Echo "Sorry, we are all out of cherry."

 Case "3"

 WScript.Echo "Do you want ice cream with that?"

 Case "4"

 WScript.Echo "You get the last piece of Peach."

 Case Else

 WScript.Echo Chr(34) & rc & Chr(34) &_

 " is not a valid choice. Please try again."

 WScript.quit

End Select

'script continues

In Listing 1-8, we build a text string in the strMenu variable. This variable is passed as the mes-
sage parameter for the InputBox function. Assuming the value returned by the InputBox is not
blank, we can use Select Case to determine the next course of action.

Even though we expect the user to enter a number, he or she might accidentally type some
non-numeric character. By enclosing the choices in quotes for the Case statement, we treat the
value as a literal text value. In this way, we are assured that the error handling code in Case
Else will work. If the user enters anything other than 1, 2, 3, or 4, the error message is dis-
played. Entering A, which should be invalid, returns the code for Case 1. Copy the script for
Listing 1-8 from the companion CD and try it out for yourself.

Chapter 1: Getting Started 13

Alas, the InputBox function is the only graphical input option we have, other than using an
HTML Application (HTA) (which we cover later in the book) or developing your own input
box in a higher-level programming language such as Microsoft Visual Basic 2005 (which is
beyond the scope of this book).

MsgBox

Closely related to the InputBox function, the MsgBox function also displays a message to the
user in a graphical dialog box. At its simplest, all you need to code is the MsgBox function and
text to be displayed.

MsgBox "Welcome to the company!"

This line displays a message box in which the user must click OK to proceed. Script execution
halts until the message box is dismissed. Recall that you use the WshShell.Popup method to set
a time interval that determines how long to display the message. You can force a popup win-
dow to behave like a message box by setting the timeout value to –1, which requires the user
to click a button to dismiss it.

You can use a MsgBox function to display information or to get information, such as whether
the user wants to continue working on the current task. The MsgBox function returns a value
determined by the button clicked. You can create a message box that offers the button options
OK, Yes, No, or Cancel.

Note There are other button types available, but these are the ones you are most likely to
use in a script. See the Windows Script Host 5.6 documentation for additional information.

Listing 1-9 displays a code snippet that you can use to let the user control the script.

Listing 1-9 MsgBox YesNo Sample
strMsg="The file already exists. Do you want to overwrite it?"

strTitle="File Confirm"

rc=MsgBox(strMsg,vbYesNo,strTitle)

If rc=vbYes Then

 Script.Echo "Overwriting file"

 'insert code here

Else

 strNewName=InputBox("Enter a new filename.",_

 strTitle,"c:\logs\newlog.txt")

 'insert code here

End If

'script continues

A MsgBox function asks whether the user wants to overwrite the file and uses the constant
vbYesNo to create Yes and No buttons. We set a rc variable to return a value from the MsgBox

14 Part I: The Basics of Advanced Windows Scripting

depending on what button the user clicked.We can then add code depending on the returned
value. But what if the user has a change of heart and wants to abort the entire script? Take a
look at Listing 1-10.

Listing 1-10 MsgBox YesNoCancel Sample
strMsg="The file already exists. Do you want to overwrite it?"

strTitle="File Confirm"

rc=MsgBox(strMsg,vbYesNoCancel,strTitle)

'take next steps based on value returned by

'MsgBox function

Select Case rc

 Case vbYes

 WScript.Echo "Overwriting file"

 'insert code here

 Case vbNo

 strNewName=InputBox("Enter a new filename.",_

 strTitle,"c:\logs\newlog.txt")

 'insert code here

 Case vbCancel

 WScript.Echo "Aborting the script"

 WScript.Quit

End Select

'script continues

In Listing 1-10, we use a Select Case statement to handle the MsgBox value. The code for vbYes
and vbNo is unchanged. All we did was add code to handle vbCancel.

Tip You can also use vbYesNo, vbOKOnly, and vbYesNoCancel as button options in a
WshShell popup. The value returned is an integer, depending on what button is clicked, but it
is easier to use the intrinsic constants like vbYes. If you don’t use the constants, you have to fig-
ure out what the constant equivalent is and use that in your code, and that probably won’t be
as meaningful unless you comment heavily. Use the constants and make your life easier.

There is one more feature of the MsgBox function that also works for the WshShell popup—the
ability to add an icon to the dialog box. Table 1-1 shows the icons available.

To include an icon, simply add it with the appropriate button type, for example,
vbOkOnly+vbInformation. Take a look at Listing 1-11, which is the script from Listing 1-10
slightly modified to use icons.

Table 5-1 MsgBox Icon Constants

VBScript Constant Integer Value Icon Displayed

vbCritical 16 Critical Message

vbQuestion 32 Warning Query

vbExclamation 48 Warning Message

vbInformation 64 Information

Chapter 1: Getting Started 15

Listing 1-11 MsgBox with Icon Sample
strMsg="The file already exists. Do you want to overwrite it?"

strTitle="File Confirm"

rc=MsgBox(strMsg,vbYesNoCancel+vbQuestion,strTitle)

'take next steps based on value returned by

'MsgBox Function

Select Case rc

 Case vbYes

 MsgBox "Overwriting file",vbOKOnly+vbInformation,strTitle

 'insert code here

 Case vbNo

 strNewName=InputBox("Enter a new filename.",_

 strTitle,"c:\logs\newlog.txt")

 'insert code here

 Case vbCancel

 MsgBox "Aborting the script",vbOKOnly+vbCritical,strTitle

 WScript.Quit

End Select

'script continues

Now our message boxes not only have a little more pizzazz, but they also provide visual rein-
forcement to the user. You can use these icon constants in a WshShell popup, but unfortu-
nately, you can’t use them with an InputBox.

Using the FileSystemObject Library

Working with files and directories is an important basic skill for a scripting administrator. You
need to be able to read text files that might contain a list of computers as well as create text
files that might be used as audit or trace logs for your scripts. The FileSystemObject library is
fairly extensive and we can’t possibly review everything here. We’ll focus on a few concepts
that will be used throughout this book.

You can open a text file as follows.

strFile="c:\boot.ini"

Set objFSO=CreateObject("Scripting.FileSystemObject")

Set objTS=objFSO.OpenTextFile(strFile)

With just two lines of code, we’ve opened C:\boot.ini. After we create the basic Scripting.File-
SystemObject, we create a text stream object that represents the contents of the file. After the
file is open and the text stream object is created, we can read the file line by line. This is accom-
plished by using a Do…While loop and the AtEndOfStream property.

Do while objTS.AtEndOfStream<>True

Loop

16 Part I: The Basics of Advanced Windows Scripting

As long as we aren’t at the end of the text file, we will loop through. We now need to read each
line of the file and presumably do something with it. Conveniently, there is a ReadLine
method. If we simply want to read the file and echo back each line, we would use something
like the following code.

Do while objTS.AtEndOfStream<>True

 Wscript.echo objTS.ReadLine

Loop

More than likely, you will want to do something with the information contained in that line.
We prefer to set a temporary variable to hold the line’s contents. This makes it easier to clean
up, manipulate, or validate the text string.

Do while objTS.AtEndOfStream<>True

 r=objTS.ReadLine

 if InStr(r,"XP") then strData=ProcessPC(r)

Loop

In this little snippet, we search the read line for XP and if it is found, we set strData to the value
returned from a function in a script called ProcessPC(). When we are finished, we should clean
up after ourselves by calling objTS.Close to close the text file.

Before we leave OpenTextFile, we will briefly explain the different modes in which a file can be
opened. You can open a file for reading only, for writing, or for appending. You simply specify
the mode as one of the OpenTextFile parameters. This is generally done by defining constants
in your script, as shown here.

Const FORREADING=1

Const FORWRITING=2

Const FORAPPENDING=8

strFile="c:\boot.ini"

Set objFSO=CreateObject("Scripting.FileSystemObject")

Set objTS=objFSO.OpenTextFile(strFile,FORREADING)

If you open a file for writing, any existing data will be overwritten. If you open a file for
appending, any data you write will be added to the end of the file. If you open a file for reading
only, no changes can be made to the file. We generally use OpenTextFile for reading or append-
ing. If we need to write new data, we use the CreateTextFile method, as shown here.

strFile="c:\logs\myaudit.log"

Set objFSO=CreateObject("Scripting.FileSystemObject")

Set objTS=CreateTextFile(strFile,TRUE)

objTS.WriteLine "Audit log: " & Now

'script continues

With the addition of a CreateTextFile parameter, the code is pretty simple. When this parame-
ter is set to TRUE, any existing file with that name will be overwritten. If you don’t include
a CreateTextFile parameter, existing files will not be overwritten, and your script won’t get
very far unless you add some error handling. But after we’ve created the text file, we use the

Chapter 1: Getting Started 17

WriteLine method to add whatever data we want. As before, when we are finished, we need to
close the file with objTS.Close.

The other common use of the FileSystemObject is for working with folders and files. Listing
1-12 illustrates some of these techniques.

Listing 1-12 FileSystemObject File Sample
On Error Resume Next

Dim objFSO,objFldr,objFiles,objTS

strTitle="File Demo"

strDir=InputBox("What folder do you want to examine?",_

strTitle,"c:\files")

If strDir="" Then WScript.quit

Set objFSO=CreateObject("Scripting.FileSystemObject")

If objFSO.FolderExists(strDir) Then

 'open folder

 Set objFldr=objFSO.GetFolder(strDir)

 'get log file information by calling

 'the GetFileName function

 strFile=GetFileName

 If strFile="" Then

 WScript.Quit

 Else

 'call validation subroutine

 ValidateFile strFile

 End If

Else

 WScript.Echo "Can't find " & strDir

 WScript.Quit

End If

objTS.WriteLine "Folder Report for " & strDir

'get files in this folder

'objFiles is a collection

Set objFiles=objFldr.Files

'initialize our counter

i=0

'set variable for total number of files in folder

t=objFiles.Count

'enumerate the collection of files

For Each file In objFiles

 'get file information and write to log file

 objTS.WriteLine file.Name & vbTab & file.size & " bytes" & vbTab &_

 file.DateCreated & vbTab & file.DateLastModified

 i=i+1

 iPer=FormatPercent((i/t))

 WScript.StdOut.Writeline(iPer& " complete")

Next

18 Part I: The Basics of Advanced Windows Scripting

'close file

objTS.Close

MsgBox "See " & strFile & " for results.",vbOKOnly+vbInformation,strTitle

WScript.Quit

'//

Function GetFileName()

On Error Resume Next

GetFileName=InputBox("What is the name of the audit file you " &_

"want to create?",strTitle,"c:\filelog.txt")

End Function

'//

Sub ValidateFile(strFile)

On Error Resume Next

'check if log file exists and if so

 'prompt user if they want to overwrite.

 If objFSO.FileExists(strFile) Then

 rc=MsgBox(strFile & " already exists. Do you want " &_

 "to overwrite it?",vbYesNoCancel+vbQuestion,strTitle)

 Select Case rc

 Case vbYes

 WScript.Echo "Overwriting file " & strFile

 Err.Clear

 'create our logfile by overwriting

 Set objTS=objFSO.CreateTextFile(strFile,True)

 If Err.Number<>0 Then

 strMsg="There was an error creating " &_

 strFile & VbCrLf & "Error#" & Err.Number &_

 " " & Err.Description

 MsgBox strMsg,vbOKOnly+vbCritical,strTitle

 WScript.Quit

 End If

 Case vbNo

 strFile=GetFileName

 ValidateFile strFile

 Case vbCancel

 WScript.Echo "Aborting the script"

 WScript.Quit

 End Select

 Else

 'create our log file

 Err.Clear

 Set objTS=objFSO.CreateTextFile(strFile)

 If Err.Number<>0 Then

 strMsg="There was an error creating " &_

 strFile & VbCrLf & "Error#" & Err.Number &_

 " " & Err.Description

 MsgBox strMsg,vbOKOnly+vbCritical,strTitle

 WScript.Quit

 End If

 End If

End Sub

Chapter 1: Getting Started 19

If you’ve been reading from the beginning of this chapter, you will notice that Listing 1-12
includes a lot of the suggestions and tips made earlier, plus a little something extra to reward
you for getting this far in the chapter.

Listing 1-12 examines all the files in a specified folder and creates a log with specific file infor-
mation. This common use of the FileSystemObject works with any local or mapped drives, as
well as Universal Naming Convention (UNC) paths. The script starts by asking the user for
the folder path to examine.

strDir=InputBox("What folder do you want to examine?",_

strTitle,"c:\files")

Assuming the user entered something, we can use the FolderExists method to validate the
entry.

If objFSO.FolderExists(strDir) Then

 'open folder

 Set objFldr=objFSO.GetFolder(strDir)

...

We want a log file for the audit results, and now that we know we can continue, we need to
create a text file. Recall that typically a function returns a value, and a subroutine is a section
of modularized code that you can call as needed. We need to get the name of the log file from
the user, so the script has a function called GetFileName that works as an InputBox wrapper.

Function GetFileName()

 On Error Resume Next

 GetFileName=InputBox("What is the name of the audit file you " &_

 "want to create?",strTitle,"c:\filelog.txt")

End Function

Again, assuming the user entered something, we need to validate the logfile. We call the
ValidateFile subroutine that takes a file name as a parameter. If the file already exists, we ask
the user if he or she wants to overwrite the file.

If objFSO.FileExists(strFile) Then

 rc=MsgBox(strFile & " already exists. Do you want " &_

 "to overwrite it?",vbYesNoCancel+vbQuestion,strTitle)

Depending on the answer, we can either create the text file and overwrite the existing version
or prompt the user to specify a new log file name.

Select Case rc

 Case vbYes

 WScript.Echo "Overwriting file " & strFile

 Err.Clear

 'create our logfile by overwriting

 Set objTS=objFSO.CreateTextFile(strFile,True)

 If Err.Number<>0 Then

 strMsg="There was an error creating " &_

 strFile & VbCrLf & "Error#" & Err.Number &_

20 Part I: The Basics of Advanced Windows Scripting

 " " & Err.Description

 MsgBox strMsg,vbOKOnly+vbCritical,strTitle

 WScript.Quit

 End If

Notice the error handling in case there is a problem overwriting the file. If the user clicks No,
we call the GetFileName function again and then call the ValidateFile subroutine, basically
rerunning the code.

Case vbNo

 strFile=GetFileName

 ValidateFile strFile

Of course the user could tire of this and click Cancel, in which case we simply exit the script.

Case vbCancel

 WScript.Echo "Aborting the script"

 WScript.Quit

 End Select

If the file doesn’t exist, we create it and return to the main part of the script. Again notice the
error handling and MsgBox.

'create our log file

 Err.Clear

 Set objTS=objFSO.CreateTextFile(strFile)

 If Err.Number<>0 Then

 strMsg="There was an error creating " &_

 strFile & VbCrLf & "Error#" & Err.Number &_

 " " & Err.Description

 MsgBox strMsg,vbOKOnly+vbCritical,strTitle

 WScript.Quit

 End If

Now that we have the audit log taken care of, let’s get down to business and use the FileSystem-
Object to look at the files in the folder. We create a collection object that will represent all the
files in the folder by calling the Files method.

Set objFiles=objFldr.Files

We can enumerate this collection with a For…Each…Next loop and write information about
each file to the log.

For Each file In objFiles

 'get file information and write to log file

 objTS.WriteLine file.Name & vbTab & file.size & " bytes" & vbTab &_

 file.DateCreated & vbTab & file.DateLastModified

 i=i+1

 iPer=FormatPercent((i/t))

 WScript.StdOut.Writeline(iPer& " complete")

Next

Chapter 1: Getting Started 21

The FileSystemObject exposes file properties such as its name; its size; the date it was created,
modified, and accessed; and a few others. This script creates a tab-delimited file, but it could
easily be a comma-separated value (CSV) log instead.

After we’ve finished examining every file in the folder, we close the log file and display a com-
pletion message to the user.

objTS.Close

MsgBox "See " & strFile & " for results.",vbOKOnly+vbInformation,strTitle

By the way, the script as written does not recurse through any subfolders. We’ll leave that as
an exercise for you. But there’s one more goody in this script—we added code to provide some
progress feedback to the user. The only catch is that you must run the script from a command
line using CScript.

There is a Count property for our files collection that will show the number of files in the
current folder. If we know the total number of files and the number of files processed, we can
calculate the percentage complete. We just need some variables.

'initialize our counter

i=0

'set variable for total number of files in folder

t=objFiles.Count

In the For…Each loop, we increment our counter variable and calculate the percent complete.
We use the FormatPercent function to tidy up the math.

i=i+1

iPer=FormatPercent((i/t))

All that is left is to display the result. We’ve decided to use the StdOut method of the Wscript
object to write directly to the command prompt window.

WScript.StdOut.Writeline(iPer& " complete")

The method will not work if the script is run with WScript. It must be run with CScript at a
command prompt by typing cscript listing1-12.vbs. The percent complete scrolls down the
screen, informing the user about how the script is progressing.

We’ve reviewed only some of the FileSystemObject basics that you’re likely to run across in this
book. For more information, take a look at the Windows Script Host 5.6 documentation.

22 Part I: The Basics of Advanced Windows Scripting

Best Practices There are many opportunities for errors and problems when using the File-
SystemObject. For example, you might try to create a text file on a nonexistent drive or in a
folder where the user lacks the proper permissions. Or you might try to access a folder or drive
that doesn’t exist. Errors like this are especially common when your script lets users specify files
and folders either as run-time parameters or perhaps from an InputBox. It is very important
that you implement error handling and validation in your scripts. Use the DriveExists, Folder-
Exists, or FileExists methods of the FileSystemObject. Check for errors when creating new text
files, and add code to gracefully handle common errors. You need to think of everything that
could reasonably go wrong, such as typing C;\ instead of C:\, and code accordingly.

Understanding Arrays

One fundamental scripting technique is to store data in an array and then use the data in a
script. Arrays can be very complicated and multidimensional, but for our purposes, we keep
them simple and basic. Think of an array as a collection of buckets, each bucket holding one
piece of information. When we need that piece of information, we retrieve it from its bucket.
Each bucket has a number, starting with 0.

There are a few ways to get information into an array. One way is to use the Array function.

myArray=Array("Elm","Maple","Oak","Walnut","Hickory","Pine")

This technique works well when the information to be stored is known ahead of time
and there is a relatively small amount of it. For a more dynamic approach, we use the Split
function.

strText="Elm,Maple,Oak,Walnut,Hickory,Pine"

myArray=Split(strText,",")

The Split function takes the specified text string and splits each element, in this case separated
by a comma, into the individual buckets of the array.

After we have data in the array, we can access a bucket directly if we know its number. Thus if
we want to use Walnut, we would reference myArray(3). Even though humans would count
Walnut as the fourth element, because we typically start counting at 1, the array starts count-
ing at 0. Thus the UBound(myArray) function, which displays the upper limit of the array,
returns 5. If we want to return a human-friendly count of the array elements, we need to use
UBound(myArray)+1.

To go through every element in the array, we can use a For…Next loop, as follows.

For i=0 To UBound(myArray)

 WScript.Echo myArray(i)

Next

Typically we pass the value from the array to a subroutine or function elsewhere in the script.
We’ll give you a sample of that later in this chapter.

Chapter 1: Getting Started 23

Dictionary Objects
Like an array, the Scripting.Dictionary object can also be used to organize external data,
but where the array puts data in buckets starting at 0, the Dictionary object stores data
in pages called keys. The stored data is referred to as an item. The Scripting.Dictionary
object is considered an associative array.

Data is stored in the Dictionary object by using the Add method.

Dim objDict

Set objDict=CreateObject("Scripting.Dictionary")

objDict.Add "a","Elm"

objDict.Add "b","Maple"

objDict.Add "c","Oak"

objDict.Add "d","Walnut"

objDict.Add "e","Hickory"

objDict.Add "f","Pine"

To reference an individual item, we need to know the corresponding key. The following
line of code would return the value for key b or Maple.

WScript.Echo objDict.Item("b")

If we want to enumerate the keys of the dictionary, we need to use the Keys method, as
shown here.

objKeys=objDict.Keys

wscript.echo "There are " & objDict.Count & " keys"

For x=0 To objDict.Count-1

 WScript.Echo objKeys(x)

Next

Some confusion arises with the Count method. When used with the Dictionary object,
the method starts counting at 1 and will return 6 in the example here. However, when
we look through the collection of keys, we start counting at 0, which is why we loop
from 0 to the objDict.Count value minus 1.

To get all the items in the dictionary, we use the Items method.

objItems=objDict.Items

For x=0 To objDict.Count-1

 WScript.Echo objItems(x)

Next

So which is the right technique to use? It depends on your script. If you have a lot of data
to shuffle around and keep track of, a Dictionary object might be the way to go. There are
ways to check if an item exists, delete individual items, and delete all items so that you
can start all over again. Dictionary objects also make it easier to reference specific ele-
ments because you define the key. In an array, each element is stored as a numbered

24 Part I: The Basics of Advanced Windows Scripting

entry, and you have to keep track of what item is in which bucket. However, if you are
just going to loop through each element and do something with it, an array is a little
easier to manage.

You can also use both in the same script. We have occasionally used code in which the
value of the Dictionary object is a CSV string that will be put into an array for further
handling.

Dim objDict,objItems

Set objDict=CreateObject("Scripting.Dictionary")

objDict.Add "user1","John,555-1234,7/7/61"

objDict.Add "user2","Mary,555-1234,12/6/56"

objDict.Add "user3","Mike,555-1234,10/13/76"

wscript.echo "There are " & objDict.Count & " user entries."

objItems=objDict.Items

For x=0 To objDict.Count-1

 tmpArray=Split(objItems(x),",")

 strName=tmpArray(0)

 strPhone=tmpArray(1)

 strBDate=tmpArray(2)

 WScript.Echo "Adding " & strName & "(" & strBdate & ")"

 'insert some code here

Next

In short, you should use the technique that works best for you.

Understanding Active Directory Services Interface Fundamentals

Developing scripts to create and manage users and groups is a pretty common administrative
task. These types of scripts must interact with a directory service, whether it is the SAM data-
base of Windows NT or Active Directory. Fortunately, Microsoft has a scripting interface
called Active Directory Services Interface (ADSI). Don’t let the name fool you. You don’t need
Active Directory to use ADSI in your scripts. If you have a Windows NT 4.0 domain, you can
still use ADSI; you just need a different provider.

The provider handles all the dirty work of interacting with a specific directory service type.
ADSI has several directory service types, but for our purposes we’ll limit our review to the
WinNT and LDAP providers.

■ The WinNT provider is used when working with legacy Windows domains or sys-
tems. The WinNT provider is designed to work with flat namespaces like an NT 4.0
domain. That’s not to say that you can’t use the WinNT provider with Active Directory—
you can, and there might be instances when it is the preferable provider. We’ll give you
an example later in this chapter.

Chapter 1: Getting Started 25

■ The LDAP provider is used for directory services based on the Lightweight Directory
Access Protocol (LDAP), such as Active Directory. You can’t use the LDAP provider with
an NT 4.0 domain because the LDAP provider is expecting a hierarchical directory ser-
vice like Active Directory.

With Active Directory, you can use the WinNT provider when you want to manage the direc-
tory flatly, and use the LDAP provider when you need a more hierarchical approach. Consider
this short script that you should run from a command prompt using CScript.

Dim objDom,objNetwork

Set objNetwork=CreateObject("WScript.Network")

Set objDom=GetObject("WinNT://" & objNetwork.UserDomain)

WScript.Echo "Listing users in " & objDom.name

objDom.Filter=Array("user")

For Each user In objDom

 WScript.Echo user.name

Next

Let’s assume your domain is running Active Directory and you run it from a computer in the
domain with a domain account. This script lists all the users in your domain, regardless of
what organizational unit (OU) they are in. The WinNT provider has no concept of OUs and
treats the directory as one big bucket.

Tip If you find your ADSI scripts mysteriously failing, check the provider. ADSI providers are
case sensitive. WinNT works, but WINNT does not work.

We use a Filter method to get only the directory objects that are of the user class or type. Then
we can loop through the list by using a For…Each…Next loop, and display the object’s name.
This name, by the way, is the user’s NT 4.0 account name, also known as the sAMAccount-
Name. If you have Active Directory and run this script, you won’t see a Windows 2003 account
name like Jeffery Hicks, but rather a pre-Windows 2000 name like jhicks. To display the user’s
common name, you must use the LDAP provider.

More Info The object the provider uses determines which properties are available. A great
source of information on working with ADSI is available from the MSDN Web site at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/adsi/adsi
/active_directory_service_interfaces_adsi.asp

(This link is on the companion CD; click MSDN ADSI.) We also recommend that you download
the ADSI SDK, which contains not only a lot of sample code but also very thorough documen-
tation. You can download the kit from the Microsoft Web site at

http://download.microsoft.com/download/2/9/7/29720925-faa3-477f-a5cd-beef80adac07
/adsrtk.msi

(This link is on the companion CD; click ADSI Resource Kit.)

26 Part I: The Basics of Advanced Windows Scripting

If we used the LDAP provider, we would have to connect to the root namespace, find all the
organizational units and other containers, and enumerate through them all. There are ways of
querying LDAP directories, but they are a little more complicated. The WinNT approach for
something like this is fast, efficient, and easy to understand.

Another way to use the WinNT provider is to access member servers and desktops. You can
use the WinNT provider to query local users, groups, and services. To connect to a remote sys-
tem, use code like this.

strServer="File01"

Set objSrv=GetObject("WinNT://" & strServer)

Code like this connects essentially to the entire flat namespace. If you want to connect to a
specific object in the namespace, you can use code like the snippet shown in Listing 1-13.

Listing 1-13 WinNT Sample: Change Local Admin Password
strServer="File01"

'new password to set for local administrator account

strPass="N3wP@ssw0rd"

set objUser=GetObject("WinNT://" & strServer & "/administrator,user")

objUser.SetPassword strPass

objUser.SetInfo

This script connects to the administrator account on server File01. It then calls the SetPassword
method to change the administrator password.

Important Never, ever hard-code administrator credentials or passwords in a script. Listing
1-13 is for educational purposes only and should not be used in a production environment as
written. This information should be passed at run time as script parameters or entered by the
user through prompts.

One method we want to emphasize here is SetInfo. This method is used for both WinNT and
LDAP providers. You’ve probably noticed that ADSI uses the GetObject method as opposed to
CreateObject. This is because the directory service already exists. ADSI gets a copy of the direc-
tory and stores it locally in cache. All the changes you make to objects in the directory are held
locally and not committed back to the directory until you call SetInfo.

Best Practices If you find yourself modifying many attributes of a directory object, don’t
call SetInfo after each property change. Wait until you are finished and then call SetInfo to
commit all the changes at once. Otherwise, you impose unnecessary network traffic and server
overhead.

Chapter 1: Getting Started 27

To use the LDAP provider, we must connect the namespace by the distinguished name of the
object. Suppose we want to create a new user object in the Employees OU that is part of the
Company.pri Active Directory domain.

Set objDom=GetObject("LDAP://OU=Employees,DC=Company,DC=pri")

With this connection, we can use the Create method to create a new user object.

strUser="Jeffery Hicks"

strSAM="jhicks "

strPass="P@ssw0rd"

Set objUser=objDom.Create("User","CN=" & strUser)

After we have the sAMAccountName for the new user, we can commit the change to Active
Directory, and the user account will essentially exist. We use the Put method to set object
attributes.

objUser.Put "samAccountname",strSAM

objUser.SetInfo

Of course, we don’t like blank user passwords, so we need to call the SetPassword method to
specify the user’s password and commit the change.

objUser.SetPassword(strPass)

objUser.SetInfo

Why didn’t we just set the password and call SetInfo only once? Well, you can’t call the SetPass-
word method for an object that doesn’t exist yet. Until we call SetInfo to commit the new
object, it doesn’t exist in Active Directory.

We’ll end this mini-review with the script in Listing 1-14, which creates a new user account.

Listing 1-14 ADSI Sample: Create User
Dim objFSO,objTS

Dim objDom,objUser

Const FORREADING=1

strFile="newusers.csv"

'format of newusers.csv

'givenname,sn,password,telephonenumber,upnsuffix

'example:

'Jeff,Hicks,P@sswordJH,555-1234,@jdhitsolutions.com

'Don,Jones,$cr1pting@nsw3rs,555-1234,@scriptinganswers.com

Set objFSO=CreateObject("Scripting.FileSystemObject")

Set objTS=objFSO.OpenTextFile(strFile,FORREADING)

Set objDom=GetObject("LDAP://OU=Consultants,DC=Company,DC=pri")

28 Part I: The Basics of Advanced Windows Scripting

'open text file and process user data on each line

Do while objTS.AtEndofStream<>True

 rline=objTS.readline

 UserArray=Split(rline,",")

 strFirst=UserArray(0)

 strLast=UserArray(1)

 strUser=strFirst & " " & strLast

 strLogon=Left(strFirst,1)&strLast

 strUsername=LCASE(Left(strFirst,1)&strlast)

 strPass=UserArray(2)

 strPhone=UserArray(3)

 strUPN=strUserName & UserArray(4)

'Create user object

Set objUser=objDom.Create ("User","cn="&strUser)

objUser.Put "samAccountName",strUserName

objUser.SetInfo

'Now that user object is created, let's set some properties

objUser.Put "givenname",strFirst

objUser.Put "sn",strLast

objUser.Put "displayname",strFirst & " " & strLast

objUser.Put "UserPrincipalName",strUPN

objUser.Put "AccountDisabled",FALSE

objUser.Put "TelephoneNumber",strPhone

objUser.SetPassword(strPass)

objUser.SetInfo

Loop

objTS.Close

WScript.Quit

In this script we have a text file for each new account. Values for different user attributes are
separated by commas.

strFile="newusers.csv"

'format of newusers.csv

'givenname,sn,password,telephonenumber,upnsuffix

'example:

'Jeff,Hicks,P@sswordJH,555-1234,@jdhitsolutions.com

'Don,Jones,$cr1pting@nsw3rs,555-1234,@scriptinganswers.com

We use the FileSystemObject to open and read the file.

Set objFSO=CreateObject("Scripting.FileSystemObject")

Set objTS=objFSO.OpenTextFile(strFile,FORREADING)

Set objDom=GetObject("LDAP://OU=Consultants,DC=Company,DC=pri")

'open text file and process user data on each line

Do while objTS.AtEndofStream<>True

rline=objTS.readline

Chapter 1: Getting Started 29

You’ll notice that we got our connection to the OU where we want to create the user accounts.
We create an array of user data using the Split function and set some variables based on the
data.

UserArray=Split(rline,",")

 strFirst=UserArray(0)

 strLast=UserArray(1)

 strUser=strFirst & " " & strLast

 strLogon=Left(strFirst,1)&strLast

 strUsername=LCASE(Left(strFirst,1)&strlast)

 strPass=UserArray(2)

 strPhone=UserArray(3)

 strUPN=strUserName & UserArray(4)

After that, it’s just a matter of creating the user object specifying the CN and sAMAccountName.

'Create user object

Set objUser=objDom.Create ("User","cn="&strUser)

objUser.Put "samAccountName",strUserName

objUser.SetInfo

At this point, all that is left is to set the rest of the user properties and call SetInfo to write the
changes to Active Directory.

'Now that user object is created, let's set some properties

objUser.Put "givenname",strFirst

objUser.Put "sn",strLast

objUser.Put "displayname",strFirst & " " & strLast

objUser.Put "UserPrincipalName",strUPN

objUser.Put "AccountDisabled",FALSE

objUser.Put "TelephoneNumber",strPhone

objUser.SetPassword(strPass)

objUser.SetInfo

After that is finished we can loop, read the next line in the text file, and repeat the process.
With a script like this, you can create a hundred fully populated user accounts from the com-
fort of your desk in about the time it takes to read this sentence.

Note The script in Listing 1-14 is intended as a teaching aid. You could run it in a production
environment provided you add some error handling logic. For example, as written, if you try to
create a user account that already exists, you will get an error. We recommend you add code to
handle that type of error, especially because it is a very foreseeable one.

Understanding Windows Management Instrumentation
Fundamentals

One of the more advanced scripting topics an administrator needs to master is how to use
Windows Management Instrumentation (WMI). WMI is the technology that Microsoft and

30 Part I: The Basics of Advanced Windows Scripting

many independent software vendors (ISV) use for their management applications and utili-
ties. You can use the same technology and develop your own management scripts, completely
customized for your environment. Let’s spend a few minutes reviewing some WMI basics. We
will explore WMI in much greater detail later in the book.

Winmgmts

Most WMI scripts connect to the WMI namespace using the Winmgmts object, which can
be used to connect to local or remote WMI namespaces. Usually, the default namespace is
root\cimv2, which most Windows management scripts connect to, but that can be changed
using the WMI Management Console.

Consider the following line of code.

Set objWMI=GetObject("winmgmts://")

This will connect to the default WMI namespace on the local computer. Notice we use Get-
Object, as we do with ADSI. To connect to a remote system, simply add the computer name.

strServer="File01"

set objWMI=GetObject("winmgmts://" & strServer)

Although it is not required, it is a good practice to specify the namespace you want to connect
to, even if it is the default because the default can be changed.

set objWMI=GetObject("winmgmts://" & strServer & "\root\cimv2")

Using code like this eliminates any doubt about which namespace you are working with, espe-
cially if someone changed the default WMI namespace. In later scripts where we connect to
different namespaces, we have to specify a namespace; by getting in the habit now, you will
make your scripts easier to follow and debug.

So far, all we’ve done is connect to the WMI namespace—we haven’t asked it for any
information. Assuming you know the class you want to learn more about, such as
Win32_OperatingSystem, there are two techniques you can use. The first incorporates the
InstancesOf method.

strServer="File01 "

set objWMI=GetObject("winmgmts://" &_

strServer).InstancesOf("Win32_OperatingSystem")

The other technique is to execute a query. We’ll review WMI queries in just a moment.

strServer="File01"

strQuery="Select * from Win32_OperatingSystem"

set objWMI=GetObject("winmgmts://" & strServer)

set objRef=objWMI.ExecQuery(strQuery)

Chapter 1: Getting Started 31

With this technique, we instantiate a new object to hold the results of the query. The data
returned is in the form of a collection, so we simply use a For…Each…Next loop to do some-
thing with the information.

For each item in objRef

 Wscript.echo item.Name

 Wscript.echo item.RegisteredUser

 Wscript.echo item.Organization

Next

Of course, you need to know the names of the properties. You can get this information from
scripting books like Managing Windows with VBScript and WMI (Jones, Don, Addison-Wesley,
2004) or from the MSDN Web site at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi
/wmi_reference.asp.\

On the CD This link is included on the companion CD. Click MSDN WMI Reference.

Tip Not every attribute for every class is populated in WMI. WMI provides a repository for
the class information, but it is up to the individual vendors to decide what data to store. There
can be two servers from two vendors, and one might have information for a particular class
and the other might not. Don’t assume there is a problem with your script; there just might not
be any information. In this situation, use tools like WbemTest and WMI Tools to enumerate
classes so that you can verify what information exists.

A quick way to learn the property names is to ask. Use this code in place of the code just
shown to get a listing of all properties and values.

For each item in objRef

 For Each property in item.Properties_

 WScript.echo property.Name & ": " & Property.Value

 Next

Next

WMI Query Language (WQL)

As we just demonstrated, it is very easy to use a query to retrieve information from WMI. WMI
has its own query language and syntax that is very similar to SQL. For the purposes of this
basic review, there are really only two types of Select queries. The first is a query that requests
all information about a certain object class.

strQuery="Select * from Win32_ComputerSystem"

The second query requests information about specified object classes. It is much more selec-
tive, so you have to know what information you are looking for.

32 Part I: The Basics of Advanced Windows Scripting

strQuery="Select Manufacturer,Model,Description from Win32_ComputerSystem"

Depending on the object class, it might be more efficient to ask only for information you want
to use. Using a Select * query when you need only one or two property values adds unneces-
sary overhead to your script.

You can further refine your script by selecting attributes that meet certain criteria. For exam-
ple, the Win32_LogicalDisk class has a property called DriveType. The value of this property
indicates whether a drive is fixed, like drive C, removable like drive A, or some other kind.
Consider the following query, which returns the DeviceID and Size properties for all fixed
drives.

strQuery="Select DeviceID,Size from Win32_LogicalDisk Where Drivetype = '3'"

We know from experience, and you can tell by testing queries using Wbemtest, that the value
for fixed drives is "3". By restricting our query to a specific drive type, we get more useful infor-
mation faster.

SWbemLocator

One of the principal advantages of the winmgmts object is ease of use. You can make secure
WMI connections with only a line or two of code. However, there is one situation when this
object just doesn’t do the job. Usually, when you execute a script, WMI takes the credentials
of the user running the script and impersonates that user on the specified computer. But what
if you want to run a script with alternate credentials? You could use the RunAs command, you
could develop a WMI script using Microsoft’s WMI scripting application programming inter-
face (API), or you could use the SWbemObject.

Using the SWbemObject requires more coding than using winmgmts, but it allows you to spec-
ify alternate credentials. You first need to create a SWbemLocator object.

Set objLoc=CreateObject("WbemScripting.SwbemLocator")

This object has a Security_ property that you can set. Typically, you can specify the Imperson-
ationLevel, which by default is 3.

objLoc.Security_.Impersonation=3

This is also where you specify additional privileges that the user might need, such as the
ability to shut down a system remotely.

Const SHUTDOWNREMOTEPRIVILEGE=23

Set objLoc=CreateObject("WbemScripting.SwbemLocator")

objLoc.Security_.Impersonation=3

objLoc.Security_.Privileges.Add SHUTDOWNREMOTEPRIVILEGE

Chapter 1: Getting Started 33

We next connect to the server, either local or remote.

Set objCon=objLoc.ConnectServer(strServer,"root\cimv2")

This line of code works well for the local system, but if you are connecting to a remote system,
you must specify alternate credentials.

Set objCon=objLoc.ConnectServer(strServer,"root\cimv2",strUser,strPassword)

Remember, you can’t specify alternate passwords for a local connection. This connection
creates a SWbemServices object.

Now that we have a secure connection to a system, we can execute our query.

strQuery="Select * from Win32_OperatingSystem"

set objRef=objCon.Execquery(strQuery)

Then we can loop through the data in objRef. Listing 1-15 illustrates how to use the SWbem-
Locator object to connect to a remote system with alternate credentials.

Listing 1-15 SWbemLocator Sample: Get Drive Info
Dim objWBEM,objCon,objRef

strServer="FILE01"

strUser="Administrator"

strPassword="$3cret"

strQuery="Select DeviceID,Size,FreeSpace,FileSystem from " &_

"Win32_LogicalDisk where DriveType='3'"

Set objWBEM=CreateObject("WbemScripting.SwbemLocator")

set objCon=objWBEM.ConnectServer(strServer,"root\cimv2",strUser,strPassword)

set objRef=objCon.ExecQuery(strQuery)

For Each drive In objRef

 strMsg=strMsg & "Drive " & drive.DeviceID & "(" & drive.FileSystem &_

 ")" & VbCrLf

 strMsg=strMsg & "Size: " & drive.Size & " bytes" & VbCrLf

 strMsg=strMsg & "Free Space: " & drive.FreeSpace & " bytes" & VbCrLf

 strMsg=strMsg & FormatPercent(drive.FreeSpace/Drive.size) &_

 " Free" & VbCrLf

 strMsg=strMsg & VbCrLf

Next

WScript.Echo strMsg

WScript.Quit

This approach to scripting WMI gives you more precise control and the ability to use alternate
credentials. If alternate credentials aren’t a requirement, the script in Listing 1-16 on the next
page accomplishes the same task as Listing 1-15, but uses winmgmts.

34 Part I: The Basics of Advanced Windows Scripting

Listing 1-16 Winmgmts Sample: Get Drive Info
dim objWMI, objRef

'enter any computer name

strServer="FILE01"

strQuery="Select DeviceID,Size,FreeSpace,FileSystem from " &_

“Win32_LogicalDisk where drivetype='3'"

set objWMI=GetObject("winmgmts://" & strServer & "\root\cimv2")

set objRef=objWMI.ExecQuery(strQuery)

WScript.Echo "Logical Drive Report for " & strServer

for each drive in objRef

 strMsg=strMsg & "Drive " & drive.DeviceID & "(" & drive.FileSystem &_

 ")" & vbcrlf

 strMsg=strMsg & "Size: " & drive.Size & " bytes" & VbCrLf

 strMsg=strMsg & "Free Space: " & drive.FreeSpace & " bytes" & VbCrLf

 strMsg=strMsg & FormatPercent(drive.FreeSpace/Drive.Size) &_

 " Free" & VbCrLf

 strMsg=strMsg & VbCrLf

Next

WScript.Echo strMsg

We will explore WMI quite a bit more throughout this book.

More Info In addition to the books and links already mentioned, we also recommend Win-
dows Management and Instrumentation (Matthew Lavy & Ashley Meggitt, New Riders, 2002)
and WMI Essentials (Marcin Policht, SAMS, 2002).

Advanced Scripting Goals
Now that we have a foundation, let’s take a look at the goals for this book.

Securing Your Scripts

If you are serious about using VBScript as an administrative tool in your enterprise, you must
do it securely. In Chapter 2, “Script Security,” we take a look at ways to create more secure
scripts by using digital signatures and certificates. We also review how to configure your pro-
duction environment to run scripts securely.

Creating Your Own Script Components and Libraries

One of the hallmarks of a great scripter is the ability to reuse code. In Chapter 3, “Windows
Script Files,” we spend some time discussing Windows Script Files (.wsf scripts) and how you
can build a reusable script library. We also show you how to create your own scripting com-
ponents in Chapter 4, “Windows Script Components.” Using the Script Component Wizard,
you’ll be able to create your own COM objects.

Chapter 1: Getting Started 35

Running Scripts Remotely

Even though there are numerous ways to remotely manage systems with a script, there might
be times when you want a script to run locally on a remote system. In Chapter 6, “Remote
Scripting,” we show you what you need to know about using the WshController object as well
as how to properly configure your network.

Retrieving Information from Active Directory

You probably know some ADSI basics. We cover some advanced ADSI and LDAP topics in
Chapter 8, “Advanced ADSI and LDAP Scripting,” and Chapter 9, “Using ADO and ADSI
Together.” We demonstrate how to use Microsoft’s EZADSomatic and other free tools. These
tools not only help with rapid script development, but they can be invaluable when trying to
figure out why a script isn’t working. We also delve into the mystery of LDAP queries as well
as ADSI queries using ActiveX Data Objects (ADO).

Manipulating Information Stored in a Database

For beginning scripting administrators, working with CSV files is a pretty standard practice.
To take your scripting to the next level, you must know how to write scripts that use database
technology. In Chapter 7, “Database Scripting,” we review the various types of databases and
how you can connect and manipulate them.

Managing Your Windows Environment with WMI Events

We promised WMI would be a major topic of this book. In Chapter 11, “WMI Events,” we
explore the world of WMI events, consumers, filters, and timers. We also show you how to use
event sinks to closely manage your systems, and include plenty of examples you can use in
your environment.

Using New WMI Classes with Windows XP and Windows Server 2003

In Chapter 13, “ Advanced Scripting in Windows XP and Windows Server 2003,” we cover
some of the new WMI classes that are available in Microsoft Windows XP and Microsoft Win-
dows Server 2003. These classes add real power to your script and open new opportunities.
We also cover new classes that will help you with DNS, IIS 6.0, printing, quotas, and more.
Each new class will include a complete administrative example.

Managing Group Policy Objects with Scripting

If you administer an Active Directory forest, chances are you are using Group Policy. Your
Group Policy environment can be managed with VBScript through the Group Policy Manage-
ment console. We explore the object model in Chapter 14, “Group Policy Management Script-
ing,” and look at how you can use scripts to back up, copy, restore, and set permissions on

36 Part I: The Basics of Advanced Windows Scripting

your Group Policy objects. We also spend a little time discussing how you can script Resultant
Set of Policy (RSoP) scenarios.

Managing Your Exchange 2003 Environment

Continuing our exploration of enterprise-level scripting, in Chapter 15, “Exchange Server
2003 Scripting,” we cover managing your Exchange 2003 environment. Using new WMI
classes, ADSI, Collaboration Data Objects (CDO), and Collaboration Data Objects for
Exchange Management (CDOEXM), you will learn how to develop scripts to manage servers,
storage groups, and mailstores and mailboxes.

Incorporating Your Scripts into Microsoft Operations Manager

In Chapter 16, “Microsoft Operations Manager 2005 Scripting,” we explore how Microsoft
Operations Manager 2005 (MOM) uses VBScript. We also explore a new object model. We
then look at how to edit existing MOM scripts, and explain how to write new ones from
scratch.

Creating a Visual Interface for Your Script with Internet Explorer and
HTML Applications (HTAs)

Tired of simple command-line scripts or wishing that there were more to graphical script-
ing than the MsgBox function? In Chapter 5, “HTML Applications: Scripts with a User Inter-
face,” we show you how to create richer scripts by using HTAs. You don’t have to be a Web
developer—we give you enough information and an easy-to-follow example so that you can
convert an existing script into an HTA.

What We Won’t Cover
Even though this is a book about advanced scripting topics, we can’t possibly cover every-
thing an administrator needs to know. We will, however, point you in the right direction for
additional information.

■ ASP and Web Scripting We’re sure that if you visit your favorite bookseller, you will
find many, many books on ASP and Web-based scripting. Online, some good places to
start are the following:

■ http://msdn.microsoft.com

■ http://www.15seconds.com

■ http://www.4guysfromrolla.com/

■ http://www.asp.net

Chapter 1: Getting Started 37

■ .NET Programming Even though it might seem like some of our scripts are complex
programming exercises in higher languages, they are not. They are scripts meant to be
interpreted at run time. We won’t spend any time using any of the .NET technologies or
any other programming languages.

■ Microsoft Office Automation There are quite a few freely available scripts that use
Microsoft Word or Microsoft Excel to create nifty reports or to serve as a data source.
These scripts use the COM objects for Microsoft Office, essentially taking Visual Basic
for Applications (VBA) code and converting it to standalone VBScript. This technique is
beyond the scope of this book. If you are interested in this topic, search the Web for
“office vbscript,” or visit the following Web site:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odc_2003_ta/html
/odc_ancoffice.asp

On the CD This link is included on the companion CD. Click MSDN Office
Automation.

Finding Information about JScript, Perl, Python, and KiXtart

Certainly, VBScript is not the only scripting language available, but we chose it for this book
because we think it is the easiest for novice scripters to learn and read. Other scripting lan-
guages have their strengths as well, but VBScript is the dominant scripting language for
Microsoft administrators. If you would like to learn more about other scripting languages you
might find these sites of interest.

■ JScript

■ http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html
/js56jsoriJScript.asp

On the CD This link is included on the companion CD. Click MSDN Jscript
documentation.

The Windows Script Host 5.6 documentation also includes JScript references.

■ Perl

■ http://www.perl.com

■ http://www.perl.org

■ http://www.activestate.com

■ http://www.perlmonks.org

38 Part I: The Basics of Advanced Windows Scripting

■ Python

■ http://www.python.org

■ http://diveintopython.org/

■ http://aspn.activestate.com/ASPN/Python/Cookbook/

■ KiXtart

■ http://www.kixtart.org

■ http://www.microsoft.com/technet/scriptcenter/scripts/kixtart/default.mspx

On the CD This link is included on the companion CD. Click Microsoft Technet Script
Center - Kix.

The Right Tool for the Job
If you are going to script professionally, you should invest in professional tools. If you are still
using Notepad as a script editor, you are spending more time developing scripts than you
need to. At this stage, it’s time to buy a commercial-quality script editor.

There are a number of editors on the market, each with a slightly different feature set. What
most have in common to one degree or another are features that make the time you spend
scripting more efficient. One such feature is inline IntelliSense, which can display objects,
methods, and properties in a list. With a quick click, you can save yourself from typing a lot of
mistakes. Another feature is the ability to insert snippets or small sections of saved code. Some
editors come with a library of code samples and usually let you add your own.

Commercial editors typically also include some form of script color coding. This makes it very
easy to identify how your script is constructed and simplifies troubleshooting. Speaking of
troubleshooting, most editors allow you to set breakpoints and other debugging features. If an
editor has a built-in debugger, so much the better. Some editors also include a variety of script-
generating wizards, online help, and links to local tools like RegEdit.

We assembled as many demonstration and evaluation versions of the major scripting editors
as we could on the companion CD. We encourage you to try them and find one that meets
your needs. You will have to decide which features are important to you and how much you
(or your boss) are willing to spend. But even a free editor that provides rudimentary color
coding and line numbering will make script development and troubleshooting much easier.

Chapter 1: Getting Started 39

Scripting Techniques
We are firm believers in using the right tool for the right job. One of the great benefits of work-
ing with Microsoft technologies is that there is usually more than one way to accomplish a
given task. For example, you can get almost the same information using Windows Manage-
ment Instrumentation Command Line (WMIC) statements in a batch file as you can with
WMI in VBScript. Likewise, there might be a resource kit utility that can get a job done almost
as well as a script you could write. What makes one tool better than the other?

When you need to develop a solution to a problem, there are several things to consider before
opening your script editor. For example, who will be using the solution? How will it be used?
Is this something that needs to be scheduled to run in the middle of the night or that is run
interactively by someone with domain administrator credentials? Are there environmental,
managerial, or security restrictions that might affect your solution?

You also need to take into account your comfort level with the available options. If you can put
together a simple batch file that will run a command-line utility more easily than you can write
a script from scratch, why bother writing a script? Even if you are an experienced script devel-
oper, you need to weigh the time you will invest against the reward. If you can accomplish
your goal more easily by using an existing utility and a batch file, there’s no need to invest a lot
of time writing VBScript. For that matter, even if there is a commercial alternative, you need to
weigh the costs. How much time will it take you to develop and test a solution? How much
time are you losing because you are not doing other tasks while scripting? How much is the
commercial alternative?

We strongly believe that script development in Windows environments is maturing and needs
to be more than a temporary solution. Developing scripts or automation solutions should be
treated with the same level of professionalism and planning as a Visual Basic .NET project.
This means developing a business case, documenting the requirements, and choosing the
most economical approach given all the circumstances.

The right tool for the right job is the one that is easy for you to use, lets you develop a working
solution in the least amount of time, and makes the most economical sense.

Summary
This chapter was a refresher course in VBScript and many of the scripting technologies we will
be using throughout the book. We also gave you an overview of the topics we will be covering,
as well as those we won’t be covering. Finally, we discussed some scripting philosophy. At this
point, you should be ready to take your scripting to the next level. Let’s begin.

41

Chapter 2

Script Security

In this chapter:

Script Encoding and Decoding . 41

Script Signing and the Windows Script Host TrustPolicy . 43

Alternate Credentials. 52

Summary . 54

There’s no doubt that scripts can be dangerous; well-publicized viruses such as Melissa and “I
Love You” have proven that point. But there’s also no doubt that scripts can be useful tools as
well. How do you ensure that the good scripts are run and the bad ones aren’t? Windows
Script Host security, along with other security technologies, can help make scripting safe in
any environment. We’ll show you how.

We’ve seen plenty of environments where administrators have taken steps to lock down
scripting. Unfortunately, many of those steps aren’t effective. For example, simply deleting
wscript.exe and cscript.exe doesn’t guarantee that scripts can’t be run. As a part of the core
Microsoft Windows operating system, those files are replaced by Windows File Protection,
certain patches and updates, and service packs. Likewise, simply reassigning the script file-
name extensions—.vbs and .wsf, for example—also doesn’t guarantee safe scripting, because
scripts with any filename extension can be executed simply by passing the script filename as
a command-line argument to wscript.exe or cscript.exe.

WScript.exe MyScript.txt

Finally, both of these techniques—and countless variations on them—aren’t meant to guaran-
tee safe scripting, they’re meant to restrict scripting completely, thus depriving you of a benefi-
cial administrative tool. There are, however, techniques you can use to make scripting safer.

Script Encoding and Decoding
Script encoding is made possible by the Microsoft Script Encoder, which is available as a free
download from the Microsoft Web site.

http://www.microsoft.com/downloads/details.aspx?FamilyId=E7877F67-C447-4873-B1B0-
21F0626A6329&displaylang=en

42 Part I: The Basics of Advanced Windows Scripting

On the CD This link, like most of the links referenced in this book, is included on the com-
panion CD. Click Download details- Script Encoder.

The purpose of the Script Encoder is to prevent your scripts from being easily read. Here is a
sample script.

'anything here will be left clear-text

'include documentation, comments, etc

'**Start Encode**

'Anything after here is encoded

MsgBox "Hello, world!"

After running the Script Encoder, the script will look like this.

'anything here will be left clear-text

'include documentation, comments, etc

'**Start Encode**#@~^QQAAAA==@#@&B)XDtk o,C0D+.P4+.n,k/,nx1WN[@#@&t/

TAG6~E_+sVKSPSW.s9"J@#@&zxIAAA==^#~@

You might think that this would be a valuable tool for certain types of script security issues,
such as writing scripts that have hard-coded administrator credentials. For example, such a
script might allow an assistant to reset user passwords without giving him or her the ability to
perform other administrative tasks. It’s not entirely true, however, that this is a safe way to
script, and it is important to clear up this misconception as early as possible.

The fact of the matter is that the Script Encoder is not a script encrypter. Technically, the
Encoder does perform a type of encryption, by using what’s called a symmetric key. This is a
single encryption key that is used to both encrypt and decrypt the password, but because
every copy of Windows Script Host has the same key built into it, the Encoder has long since
been rendered useless as a security tool. There are a number of readily available tools that can
decode scripts back into their plain-text versions, revealing any sensitive information in them.
Some of these tools include the following:

■ http://www.virtualconspiracy.com/index.php?page=scrdec/intro, a downloadable tool

■ http://www.greymagic.com/security/tools/decoder/, an online tool that decodes scripts
right in a Web page with no download required

■ http://www.password-crackers.com/crack/scrdec.html, which is not free, although it more
or less the same as the free utilities

We aren’t publishing these URLs to reward the tools’ authors, but rather to draw your atten-
tion to the fact that the Script Encoder cannot be relied upon to protect security-sensitive
information. Indeed, that was never the Script Encoder’s purpose. It was originally meant to
obscure the code in Web pages, thereby reducing (but not eliminating) the possibility of intel-
lectual property theft. The ease with which scripts can be decoded means you should never
consider the Script Encoder a security tool, because it’s too easy for a decoder to reveal the
sensitive information you were trying to protect.

Chapter 2: Script Security 43

Script Signing and the Windows Script Host TrustPolicy
Windows Script Host (WSH) 5.6 includes a new feature called TrustPolicy. Because WSH 5.6
is installed with the latest versions of the Windows operating systems (including the latest
service packs) and is available as a free download, there’s no reason not to utilize TrustPolicy
to provide a safer scripting environment. TrustPolicy uses advanced, certificate-based technol-
ogies to help determine which scripts can be trusted and which cannot.

Understanding Digital Certificates and Script Signing

TrustPolicy is based on the concept of code signing, which uses digital certificates to uniquely
sign a piece of code, such as a script or an executable. The code-signing process calculates a
checksum, which is a unique value created by a complex mathematical algorithm. Any given
piece of code has only one checksum, and no two pieces of code have the same checksum.
The checksum is encrypted by using a certificate’s private key, and decrypted by using the cer-
tificate’s public key. Microsoft, for example, signs the executables and DLLs for much of their
software. Figure 2-1, for example, shows the signature applied to the main executable for
Microsoft Excel 2003.

Figure 2-1 The signature for Excel.exe

To verify a signature, Windows uses the certificate’s public key to decrypt the signature. If the
decryption is successful, Windows knows that the signature is valid, because only the signer
would have the private key that created the signature. Windows then calculates a checksum
on the code, and compares it to the checksum in the decrypted signature. If the two match,
the code is unmodified. If the two do not match, the code has been modified since it was
signed. And if that’s the case, the code is considered untrusted.

44 Part I: The Basics of Advanced Windows Scripting

Simply having a proper signature doesn’t guarantee that code is considered trusted, however,
because the certificate used to create the digital signature must also have been issued by a
trusted certification authority (CA). Figure 2-2 shows the details for the certificate used to sign
Excel.exe. As you can see, the certificate was issued by Microsoft Code Signing PCA.

Figure 2-2 Reviewing the details of a code signing certificate

Figure 2-3 shows the certification path for the certificate, which lists the Microsoft Root
Authority as the root CA that authorized this certificate.

Figure 2-3 Reviewing the certification path of a code signing certificate

Chapter 2: Script Security 45

A Matter of Trust
Why is Microsoft Root Authority a trusted CA? Why are any of the CAs listed in Internet
Options trusted? Generally, it’s because Microsoft included them with Windows when
it shipped, or because you’ve added them as trusted root CAs on your own. But what
does being trusted entail?

The purpose of a digital certificate is to uniquely identify the certificate holder. In the
case of Microsoft, the certificate represents Microsoft Corporation. If someone other
than Microsoft were to obtain a Microsoft certificate, that person could sign malicious
software as though he or she were Microsoft, fooling you into thinking it was safe. The
purpose of a CA, then, is to ensure that certificates are given only to the proper individ-
uals. When you say that you trust a CA, you’re saying that you trust them to verify indi-
vidual or corporate identities before issuing certificates.

Chances are, you probably have no idea how many of the CAs listed in the Certificates
dialog box are trustworthy. For maximum security, you should remove any CAs whose
business practices you’re not familiar with from the Trusted Root Certification Authori-
ties list until you’ve verified that their business practices with regard to security are sat-
isfactory. Note that removing one or more CAs can result in warnings in applications
like Internet Explorer, because you might try to connect through https to a Web site that
has a certificate issued by one of the CAs you removed. However, if you don’t trust the
CA, you shouldn’t trust the https connection either.

Recognizing many administrators’ concerns in this regard, Microsoft has published a
Knowledge Base article at

http://support.microsoft.com/default.aspx?scid=kb;en-us;293819

that describes how to remove a CA from the list.

On the CD This link is included on the companion CD. Click How to Remove a Root
Certificate from the Trusted Root Store.

To check if this CA is trusted on a Microsoft Windows 2000, Microsoft Windows XP, or
Microsoft Windows Server 2003 computer, open Control Panel, double-click the Internet
Options icon, and click the Content tab. In the Internet Properties dialog box, on the Root
Certification Authorities tab, click the Publishers button to see a list of trusted root certifica-
tion authorities, as shown in Figure 2-4 on the next page. As you can see, the Microsoft Root
Authority is in this list, meaning it—and all certificates it authorizes or issues, and that its sub-
ordinate CAs authorize or issue—is trusted.

Therefore, because the certificate used to sign Excel.exe ultimately comes from a trusted root
CA, and because the signature is intact and correct, Excel.exe is trusted code.

46 Part I: The Basics of Advanced Windows Scripting

Figure 2-4 Reviewing the list of trusted root CAs

This idea of trust works exactly the same way for scripts. You can obtain a code-signing certif-
icate, either from a commercial CA or from an internal CA, and use that certificate to sign your
scripts. If the CA that issued the scripts is trusted and the scripts remain unmodified, the
scripts will be trusted.

Now you need a way to stop untrusted scripts from running, which is where WSH TrustPolicy
comes into play.

Understanding WSH TrustPolicy

WSH TrustPolicy defaults to an essentially neutral condition in which both trusted and
untrusted scripts are allowed to run. You can, however, reconfigure WSH through specific reg-
istry settings. There are two main configurable sections; one section configures computer-
wide settings for all users, and the other configures user-specific preferences.

The user-specific settings are located at HKEY_CURRENT_USER\SOFT-
WARE\Microsoft\Windows\Windows Script Host\Settings. There is one major
REG_DWORD value you can create under this registry key:

■ TrustPolicy Set this to 0 to run both trusted and untrusted scripts, or to 2 to run only
trusted scripts. If you set this value to 1, the user will be prompted before untrusted
scripts are allowed to run.

The computer-wide settings are located at HKEY_LOCAL_MACHINE\SOFT-
WARE\Microsoft\Windows\Windows Script Host\Settings, and there are several
REG_DWORD values you can specify:

■ TrustPolicy This is configured in the same way as the per-user value of the same name.
Usually, the per-user setting takes precedence over the computer-wide setting.

Chapter 2: Script Security 47

■ IgnoreUserSettings If set to 1, the computer-wide TrustPolicy setting will override any
per-user settings. The default is 0.

■ SilentTerminate If set to 1, any attempt to run untrusted scripts will not result in a
warning message. If set to 0 (the default), running untrusted scripts (with TrustPolicy
set to 2, that is) will result in a warning message.

■ UseWINSAFER This value applies only to Windows XP and later. If set to 0, which is the
default, WSH TrustPolicy is disabled in favor of Software Restriction Policies (which
we’ll discuss later in this chapter). Setting this value to 1 enables WSH TrustPolicy.

We generally recommend enabling WSH TrustPolicy and setting it to 2 for all users, unless
you’re using Software Restriction Policies, which are more flexible.

Configuring WSH TrustPolicy in Your Environment

If you’ve decided to implement WSH TrustPolicy in your environment (and why wouldn’t
you?), you could make the necessary registry changes manually through a logon script or
through some other utility, but Group Policy is by far the most effective means for deploying
these settings. Listing 2-1 is an administrative template (.adm file) that can be imported into a
Group Policy object (GPO) to centralize configuration of WSH TrustPolicy.

Listing 2-1 WSH TrustPolicy Template
 #if version >= 3

CLASS USER

 CATEGORY "Windows Script Host"

 POLICY "Windows Script Host trust policy"

 EXPLAIN "Configure the behavior of Windows Script Host 5.6 or later with regard to

unsigned or untrusted scripts. This interacts with Windows Script Host settings in

Computer Configuration. On WinXP and higher, this setting is only active if WSH Software

Restriction Policies are turned off."

 KEYNAME "Software\Microsoft\Windows Script Host\Settings"

 PART "Allow untrusted scripts" DROPDOWNLIST REQUIRED

 VALUENAME "TrustPolicy"

 ITEMLIST

 NAME "Always" VALUE 0

 NAME "Prompt user" VALUE 1

 NAME "Never" VALUE 2

 END ITEMLIST

 END PART

 END POLICY

 END CATEGORY

CLASS MACHINE

 CATEGORY "Windows Script Host"

48 Part I: The Basics of Advanced Windows Scripting

 POLICY "Windows Script Host trust policy"

 EXPLAIN "Configure the behavior of Windows Script Host 5.6 or later with regard to

unsigned or untrusted scripts. This interacts with Windows Script Host settings in User

Configuration. On WinXP and higher, this setting is only active if WSH Software

Restriction Policies are turned off."

 KEYNAME "Software\Microsoft\Windows Script Host\Settings"

 PART "Allow untrusted scripts" DROPDOWNLIST REQUIRED

 VALUENAME "TrustPolicy"

 ITEMLIST

 NAME "Always" VALUE 0

 NAME "Prompt user" VALUE 1

 NAME "Never" VALUE 2

 END ITEMLIST

 END PART END POLICY

 POLICY "Ignore User Configuration settings for WSH security"

 EXPLAIN "When enabled, causes Computer Configuration setting for WSH trust policy

to override User Configuration setting"

 KEYNAME "Software\Microsoft\Windows Script Host\Settings"

 PART "Ignore User Configuration" CHECKBOX

 VALUENAME "IgnoreUserSettings"

 VALUEON 1

 VALUEOFF 0

 END PART

 END POLICY

 POLICY "Use Software Restriction Policies"

 EXPLAIN "When enabled, Software Restriction Policies overrides WSH trust policy

setting"

 KEYNAME "Software\Microsoft\Windows Script Host\Settings"

 PART "Use Software Restriction Policies" CHECKBOX

 VALUENAME "UseWINSAFER"

 VALUEON 1

 VALUEOFF 0

 END PART

 END POLICY

 POLICY "Warn User"

 EXPLAIN "When enabled, displays a warning when WSH cannot execute an untrusted

script"

 KEYNAME "Software\Microsoft\Windows Script Host\Settings"

 PART "Warn user that untrusted scripts won't execute" CHECKBOX

 VALUENAME "SilentTerminate"

 VALUEON 0

 VALUEOFF 1

 END PART

 END POLICY

 END CATEGORY

#endif

On the CD You’ll also find this ADM template, Wsh.adm, on the CD that accompanies this
book.

Chapter 2: Script Security 49

Note that the WSH TrustPolicy settings aren’t contained under the \SOFTWARE\Policies sec-
tion of the registry, which means they’re not considered true policies. Instead, Microsoft refers
to them as preferences, and there are some important differences between a policy and a pref-
erence:

■ To remove preferences, you have to configure a GPO that reconfigures the preferences to
their original, default values. Simply removing the settings or unlinking the GPO won’t
remove preferences.

■ The GPO editor doesn’t usually display preferences. Right-click the Administrative Tem-
plates folder and click Properties to force the GPO editor to display them.

These differences aside, GPOs are a great way to deploy consistent WSH TrustPolicy settings
throughout your enterprise.

Signing Scripts by Using a Digital Certificate

After you obtain a code-signing certificate and install it on your computer, you’ll be ready to
start signing scripts. Typically, you’ll install the certificate to the store named Personal Certif-
icates, which is the default. You’ll need to know the name of the certificate, which appears in
the Internet Properties dialog box after the certificate is installed. To sign a script, simply write
a VBScript script that contains the following:

Set objSigner = CreateObject("Scripting.Signer")

objSigner.SignFile "MyScript.vbs","MyCert"

Where Do You Get a Certificate?
There are a couple ways to obtain a code-signing certificate, and the one you use
depends largely on your specific needs. Remember, any computer expected to run your
scripts has to trust the CA that issued your certificate, so that’ll place some limitations
on where you can obtain a certificate. For example, a number of tools exist that will
create self-signed certificates. These are essentially certificates that you issue to yourself,
meaning you’re the CA. There’s no real way to configure computers to trust you as a CA,
though, so these certificates are primarily useful only for testing purposes on your local
computer.

If you have an internal CA in your company, you might be able to obtain a code-signing
certificate from it. However, you will need to make sure that all your computers are con-
figured to trust that CA. Commercial CAs are also an option—VeriSign, Thawte, Cyber-
Trust, among others—because most Windows computers are already configured to trust
the major commercial CAs. A commercial CA has one big advantage over an internal CA:
portability. If you intend to share signed scripts outside of your environment, a commer-
cial CA is probably required. That’s because it’s unlikely that anyone trusts your internal
CA outside of your own network. However, the organizations you work with are likely to
trust the same commercial CAs that you do.

50 Part I: The Basics of Advanced Windows Scripting

Of course, substitute the path and filename of the script you want to sign for MyScript.vbs, and
the name of the certificate you’re using to sign the script for MyCert. This short script can be
used to sign other scripts.

The signed script will have a special signature block at the end of the file.

On Error Resume Next

Dim objSet

If WScript.arguments.count>0 Then

 strSrv=WScript.arguments(0)

Else

 strSrv="LOCALHOST"

End If

Set objSet=GetObject("winmgmts://" & strSrv).InstancesOf("Win32_OperatingSystem")

If Err.Number Then

 strErrMsg= "Error connecting to WINMGMTS on " & UCase(strSrv) & vbCrlf

 strErrMsg= strErrMsg & "Error #" & err.number & " [0x" & _

 CStr(Hex(Err.Number)) &"]" & vbCrlf

 If Err.Description <> "" Then

 strErrMsg = strErrMsg & "Error description: " & _

 Err.Description & "." & vbCrlf

 End If

 Err.Clear

 WScript.echo strErrMsg

 WScript.quit

End If

For Each obj In objSet

 currtime=obj.LastBootUptime

Next

curryr=Left(currtime,4)

currmo=Mid(currtime,5,2)

currdy=Mid(currtime,7,2)

currtm=Mid(currtime,9,6)

LastBoot= currmo & "/" & currdy & "/" & curryr & " " & _

FormatDateTime(Left(currtm,2)&":"&Mid(currtm,3,2)&":"&Right(currtm,2),3)

WScript.echo UCase(strSrv) & " Last Boot: " & LastBoot

Set objSet=Nothing

'' SIG '' Begin signature block

'' SIG '' MIID7AYJKoZIhvcNAQcCoIID3TCCA9kCAQExDjAMBggq

'' SIG '' hkiG9w0CBQUAMGYGCisGAQQBgjcCAQSgWDBWMDIGCisG

'' SIG '' AQQBgjcCAR4wJAIBAQQQTvApFpkntU2P5azhDxfrqwIB

'' SIG '' AAIBAAIBAAIBAAIBADAgMAwGCCqGSIb3DQIFBQAEECJJ

'' SIG '' dGPYS4TpW1/NYibcd/mgggIVMIICETCCAXqgAwIBAgIQ

'' SIG '' 3zX2vaMlcZVHykons8ASeTANBgkqhkiG9w0BAQQFADAW

'' SIG '' MRQwEgYDVQQDEwtQZXJzb25hbCBJVDAeFw0wNTAxMDEw

'' SIG '' NDAwMDBaFw0xMTAxMDEwNDAwMDBaMBYxFDASBgNVBAMT

'' SIG '' C1BlcnNvbmFsIElUMIGfMA0GCSqGSIb3DQEBAQUAA4GN

Chapter 2: Script Security 51

'' SIG '' ADCBiQKBgQCsFHTjlxN8p8imHhQMrnIGCcrr+F9uyk2r

'' SIG '' n4eb/APZFFgJS7dAVPWycgbNoy6UR4aWY94Xo/f4sA6L

'' SIG '' czUxoJbbgTo33/0/MOy2AAuUBk3hDfz1laQ9S9k7Coyu

'' SIG '' oYT3di0y4Nm4nJ5E+RQ5xD1Nf4s2uLDU6gGFded+6aa7

'' SIG '' 9BaMgwIDAQABo2AwXjATBgNVHSUEDDAKBggrBgEFBQcD

'' SIG '' AzBHBgNVHQEEQDA+gBAZxXwZaG1kHAAb42VQV5xmoRgw

'' SIG '' FjEUMBIGA1UEAxMLUGVyc29uYWwgSVSCEN819r2jJXGV

'' SIG '' R8pKJ7PAEnkwDQYJKoZIhvcNAQEEBQADgYEANIL//6LJ

'' SIG '' euOk8a4NdbmvLSSs4tujkf4chm6TxzLEQcOcH8IvkaxP

'' SIG '' l+9vshoJu16ngYWZa2H5mT5opc1FIDmWw1EoZXv2qGiQ

'' SIG '' +aTFE0SAVbG6LpmqjVkFYWmyhP1piL9QWi4sGENVTdOn

'' SIG '' JntdaQJVl2tx0LFOA2RVVS37qAsFVl8xggFBMIIBPQIB

'' SIG '' ATAqMBYxFDASBgNVBAMTC1BlcnNvbmFsIElUAhDfNfa9

'' SIG '' oyVxlUfKSiezwBJ5MAwGCCqGSIb3DQIFBQCgbDAQBgor

'' SIG '' BgEEAYI3AgEMMQIwADAZBgkqhkiG9w0BCQMxDAYKKwYB

'' SIG '' BAGCNwIBBDAcBgorBgEEAYI3AgELMQ4wDAYKKwYBBAGC

'' SIG '' NwIBFTAfBgkqhkiG9w0BCQQxEgQQlpHc1iO9Yobzitac

'' SIG '' Rx2eRjANBgkqhkiG9w0BAQEFAASBgBvylURhAFtNNN9j

'' SIG '' UT3NQAjfAO9Md5kEClsDiPXIkMtWloucEJO/f2wZ4iYB

'' SIG '' sX6kJUZFu21ogH2ZhZQFPYtokpJsw3q15oETYTL65YmI

'' SIG '' U7stVz/pp4mIL4tBxbLFwKGlXth+R+Fi8btGF0aUOsfb

'' SIG '' pZwKmYUlkAW0d4HbFNQjMua1

'' SIG '' End signature block

Be careful not to modify this signature block (which begins with the line '' SIG '' Begin signature
block), or any portion of your script. Any modification will render the signature invalid.

Another way to sign scripts is to use SAPIEN PrimalScript (www.primalscript.com), a commer-
cial script editor, and the only one we’re aware of that includes built-in script signing. As
shown in Figure 2-5, you can provide PrimalScript with the name of your certificate (leave the
store name blank if your certificate is in the default store), and the tool can sign scripts each
time you save them, ensuring that they’ll run correctly afterward. You can also configure the
HKEY_LOCAL_USER version of the TrustPolicy value, so you can test the TrustPolicy settings
with your newly signed scripts.

Figure 2-5 Configuring PrimalScript to sign scripts

52 Part I: The Basics of Advanced Windows Scripting

Using Software Restriction Policies

Software Restriction Policies (SRP) were introduced in Windows XP and Windows Server
2003 as a way to better control the software that is allowed to run in a Windows environment.
Configured and deployed through GPOs, SRP allows administrators to define a set of excep-
tions that identify various pieces of permitted software, and specify a default security rule that
prevents all other software from being executed. SRP uses digital signatures to identify soft-
ware, much like WSH TrustPolicy does, although SRP can also use a variety of other methods.
Initially configuring SRP can be time consuming, because you need to identify and define an
exception for each authorized piece of software in your environment. However, after it is con-
figured, SRP can virtually eliminate malware and other unauthorized software, making for a
great return on the initial investment of time.

Note A complete discussion of SRP is beyond the scope of this book. However, you can read
more about SRP in the Windows XP or Windows Server 2003 documentation, and in any num-
ber of good books, including Windows Server 2003 Weekend Crash Course (Don Jones, 2003,
Wiley) and Introducing Microsoft Windows Server 2003 (Jerry Honeycutt, 2003, Microsoft).

Alternate Credentials
From time to time, you’ll need to run scripts using alternate credentials. Perhaps you need to
run an administrative script and aren’t logged on with administrative credentials, or perhaps
you’re connecting to a remote service and need to specify appropriate credentials for that ser-
vice. Whatever the reason, scripting provides a number of ways to use alternate credentials.

Note Keep in mind that security isn’t always as simple as alternate credentials. For example,
any script that is intended to modify portions of a user’s profile usually must run under that
user’s security context to gain access to the profile. Chapter 6 covers this type of remote script-
ing in more detail.

Using the RunAs Command

The RunAs.exe command-line tool can be used to execute scripts by using alternate creden-
tials. This is useful if, for example, your organization practices the Principle of Least Privilege
(or Access), and you log on to your computer using a non-administrative account. Using
RunAs will allow you to execute the script with the necessary administrative credentials. From
a command prompt window, type Runas /? to see the command’s proper syntax.

Chapter 2: Script Security 53

Using Scheduled Tasks Credentials

For scripts that must be run on a regular basis, or that you want to schedule to run while
you’re away, you can use the Windows Task Scheduler. The Task Scheduler allows you to
specify alternate credentials under which a script is run.

This technique can often be used as a workaround when you need a script run on another
computer under alternate credentials, but you have no direct means for doing so. Use the
Schtasks.exe command-line tool (included with Windows Server 2003) to create a task on a
remote computer. Have the task use alternate credentials and execute whatever script is nec-
essary. In a command prompt window, type Schtasks /create /? to see the correct syntax for
creating tasks on remote computers and for specifying credentials for the task to use.

Using ADSI Alternate Credentials

Active Directory Services Interface (ADSI) scripts use the security context of the user running
the script. In some instances, you might want to provide alternate credentials for the actual
ADSI connection, for example, when the account running the script doesn’t have permission
to perform whatever tasks you need the script to perform. Listing 2-2 shows an example of
using alternate credentials to connect to Active Directory through an LDAP query.

Listing 2-2 ADSI Alternate Credentials
Const ADS_SECURE_AUTHENTICATION = 1

'Specify alternate credentials

strUserDN = "cn=Administrator,cn=Users,dc=company,dc=com"

strPassword = InputBox("Enter password for Administrator@company.com")

'Connect to the domain

Set objRoot = GetObject("LDAP:")

Set objDomain = _

 objRoot.OpenDSObject("LDAP://dc=company,dc=com", _

 strUserDN, strPassword, ADS_SECURE_AUTHENTICATION)

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

This example connects to the domain. You could, of course, specify any legal LDAP query to
return any object, such as a user, group, organizational unit, contact, and so forth. Also note
that this technique works with the ADSI WinNT provider, which would allow you to specify
alternate credentials for connections to Microsoft Windows NT domains, to standalone com-
puters, or domain-member computers.

54 Part I: The Basics of Advanced Windows Scripting

Using WMI Alternate Credentials

Using alternate credentials with WMI queries is similar to using them in ADSI queries, as
shown in Listing 2-3. Note that you cannot use the winmgmts: moniker technique to connect
to WMI if you are using alternate credentials; you must use the object-based connection
method shown here. Additionally, Windows does not permit the specification of alternate cre-
dentials to the local computer. If you specify alternate credentials for a local connection, you’ll
get an error.

Listing 2-3 WMI Alternate Credentials
Const wbemImpersonationLevelImpersonate = 3

'specify credentials

strComputer = "server1"

strUser = "Administrator"

strPassword = InputBox("Enter password for " & strUser & _

 " on " & strComputer)

'connect to WMI

Set objSWbemLocator = _

 CreateObject("WbemScripting.SWbemLocator")

objSWbemLocator.Security_.ImpersonationLevel = _

 wbemImpersonationLevelImpersonate

Set objSWbemServices = _

 objSWbemLocator.ConnectServer(strComputer, _

 "root\cimv2", strUser, strPassword)

You can then, of course, use the ExecQuery method of the objSWbemServices object to execute
a WMI query.

Summary
In this chapter, we presented an overview of common scripting security issues. We discussed
ways to make scripting safer and more secure by using WSH TrustPolicy and SRP. We also
showed you some techniques for running scripts under alternate credentials, and gave you
ideas for how these techniques might be used. These are techniques you’ll use again and again
with the scripting techniques in this book, so be sure to refer back to this chapter from time to
time to refresh your memory of these security options.

Part II
Packaging Your Scripts

In this part:

Chapter 3: Windows Script Files .57

Chapter 4: Windows Script Components .95

Chapter 5: HTML Applications: Scripts with a User Interface 125

57

Chapter 3

Windows Script Files

In this chapter:

Defining Windows Script Files . 57

Understanding XML . 58

Creating Script Jobs. 63

Including Other Scripts . 63

Adding Resources . 63

Creating Examples and Help Text . 64

Using Named Parameters . 65

Viewing a Windows Script File in Action . 67

Converting an Existing Script to a WSF Utility . 72

Creating and Using a Wrapper WSF . 83

Summary . 94

VBScript can be used in a variety of ways, including as a Windows Script File (WSF). These
XML-formatted scripts offer many benefits and features that we’ll explore in this chapter.

A standard VBScript contains one script per file, plus supporting functions and subroutines,
so if you have many related scripts, you have to manage them individually. If you have a col-
lection of code you use frequently, you probably cut and paste between scripts. A Windows
Script File (WSF) makes it easier to manage scripts and reuse code, and it can even make
scripts easier to write.

Defining Windows Script Files
A Windows Script File is a standard Microsoft Visual Basic script that has been formatted in
an XML structure. This XML structure defines various sections of the script and allows you to
package scripts. Each WSF can have as many scripts, or jobs, as you like. They can even be writ-
ten in different scripting languages. For example, one WSF can contain a script written in
VBScript that calls another script written in JScript.

58 Part II: Packaging Your Scripts

The XML formatting might appear daunting at first, but after you gain some experience with
it, you’ll see how all the pieces work. Each section is defined by a tag, similar to an HTML tag.
The tags define the various elements. Each element has an opening and closing tag. For exam-
ple, <comment></comment> tags define the comment element. There is an opening <comment>
tag and a closing </comment> tag for each element. The text between the tags is referred to as
the body. You’ve probably seen WSF scripts with many tags and what looks like complicated
formatting. Not to worry. Much of the XML format is not required. All you really need are
<job> and <script> tags.

<job>

<script language="vbscript">

MsgBox "Hello World!"

</script>

</job>

Because this is an advanced scripting book, we’ll explore WSF scripts in greater detail.

Understanding XML
Let’s examine the tags in the order you would use them in a WSF script. Remember, each tag
must be closed with a corresponding ending tag that includes the slash (/) character, for
example <comment> and </comment>. In the following sample, the <object> tag doesn’t have a
body, so you can close it with just a slash and closing angle bracket (/>).

<object id="objShell" progid="WScript.Shell"/>

WSF scripts can be configured to use strict XML formatting. If you start the WSF with the tag
<?XML version="1.0" ?>, you are specifying that the script parser should enforce XML rules.
(There is no other version than 1 for scripting purposes.) Forcing strict XML parsing is a mat-
ter of preference, and to some degree, experience. Strict enforcement will ensure that all your
tags are properly formatted and prevent run-time errors. In fact, enforcement is so strict that
tags are case sensitive. If you enter <comment>This is a practice script.</Comment> in your WSF,
you will get an error at run time about a tag mismatch.

When you use strict formatting, you will also want to place your script code between a CDATA
tag like this.

<script language="VBScript">

<![CDATA[

On Error Resume Next

MsgBox "<100> Perfect Score!"

]]>

</script>

If you don’t include this tag, anything that looks like a tag, in this case the text <100>, will
generate a run-time error.

Chapter 3: Windows Script Files 59

Let’s take a quick look at the tags.

The package Tag

This tag is the wrapper for all the jobs in the script file. There should be only one package tag
per file. If you specify <?XML version="1.0" ?> in your script, this tag is required, unless you
have only one job in your WSF.

The comment Tag

If you want to add some metadata or other notes about the script, use the comment tag. You
use this tag at the beginning of the script, after the package tag. Anything between <comment>
and </comment> will be treated as a comment and not processed in any way. The tag body is
never displayed to the user at run time. The only way to view the comment is to open the
script in a text or script editor. Also, don’t use this tag to add comments to the body of your
script. Use the apostrophe as you would in any other VBScript.

Note You can also use the <!—and --> tags to define a comment anywhere outside of the
<script> tag.

The job Tag

The job tag is used to group everything related to a specific task, such as description, example,
named, object and script. You can have as many jobs as you want in a single WSF file but if you
have more than one job, you must set the tag’s id attribute.

<package>

<job id="Backup">

...

</job>

<job id="Restore">

...

</job>

</package>

To execute a specific job in a WSF script that includes more than one, you must use the //Job
switch with CScript. For example, to run the Backup job in ServerJobs.wsf at a command
prompt, you would type cscript serverjobs.wsf //job:Backup. If you have multiple jobs
defined and don’t specify which one to run, only the first job will run. Jobs do not run sequen-
tially in the script.

60 Part II: Packaging Your Scripts

The runtime Tag

One of the benefits of using the WSF format is a richer set of run-time features, such as named
arguments and detailed help information. These features are defined by tags that are enclosed
in a set of runtime tags.

<runtime>

<description>…</description>

<named>…</named>

<example>…</example>

</runtime>

The description Tag

This tag is similar to the comment tag, except the body is displayed to the user at run time if
the wscript.ShowUsage method is called. You can use this tag to provide a description of the
scripts, version information, contact information, or anything else you like. You don’t have to
supply examples or syntax information; that can be handled by other tags. The tag body can
be as long as you want, but it will be displayed as formatted in the file.

<description>

 BigEasy.wsf

 This is the first line of my description.

 This script will make your life very easy

 and make your morning coffee.

</description>

If you have a lengthy description, you will need to test the script and adjust the line lengths
accordingly.

The example Tag

If the wscript.ShowUsage method is called, the body of the example tag can be used to give
syntax examples to the user.

<example>

 cscript wsfdemo.wsf /dir:directorypath /file:filename

 cscript wsfdemo.wsf /dir:c:\temp /file:c:\results.txt

</example>

As with the comment tag, formatting is retained, so in the code snippet just shown, a blank line
appears before the sample commands are displayed. You will need to test your help message
to make sure the formatting is correct.

Chapter 3: Windows Script Files 61

The named Tag

The named tag is used to specify run-time arguments. If your script needs a server name as a
parameter, you could use a named tag to define the parameter.

<named name="server" />

At run time, the user would type cscript myscript.wsf /server:File01 to execute the script
using File01 as the server name parameter. I’m sure you noticed that there is no </named>
closing tag. Remember, if the tag doesn’t have a body, you can use a single tag element, as
we’ve done here.

Note You might have noticed that sometimes a run-time parameter is specified as /server,
like the example just shown. Other times, we’ve used a parameter like the pervious example,
//job. This is because CScript uses two forward slashes (//) for its run-time parameters so that
it knows which parameters apply to CScript and which apply to your script. The following com-
mand is correct, even though it might look a little odd.

Cscript myscript.wsf //job:Backup /server:File01

Best Practices By the way, the best practice is to put all the CScript options first followed
by any parameters for your script.

The object Tag

The object tag is used to create objects for your script without using the CreateObject method.
As an added bonus, when you use the object tag, you can access the object’s type library. This
is helpful because with full access to the type library, you can access all the object’s constants
without having to define them. A traditional script might contain code like this.

Dim objFSO

Const FORREADING=1

Const FORWRITING=2

Const FORAPPENDING=8

Set objFSO=CreateObject("Scripting.FileSystemObject")

In a WSF script, this can be replaced with a single line of code.

<object id="objFSO" progid="Scripting.FileSystemObject" reference="TRUE"/>

You don’t have to call CreateObject or define any constants. You still need to know the name of
the constant within the type library, but you can find that by searching the Internet, studying

62 Part II: Packaging Your Scripts

related scripts, or by using an object browser utility. By the way, you still have to explicitly cre-
ate any child objects. For example, based on the object tag just shown, you would still need to
write the following in the script section.

Set objFile=objFSO.OpenTextFile("MyLog.txt",FORAPPENDING)

You can’t define objFile with an object tag. You also can’t use the tag for objects you get, like
winmgmts.

Let’s take a look at the object tag in a bit more detail:

■ Every object tag has an id property. The value of this property is the name of the object
variable that you want to use in your script. In this example, it is objFSO.

■ Every object tag must have a defined progid property. This value is the same as the value
you would use in a traditional CreateObject statement. In our example, it is Scripting.File-
SystemObject. If you need to create an object that doesn’t have a progid, use the object’s
guid property.

■ The reference property is optional, but we usually set it to TRUE. When set to TRUE, you
have full access to the object’s type library. There is no performance penalty for enabling
this attribute. If you don’t set it to TRUE, you must explicitly define any type library con-
stants in your script.

The script Tag

The main part of any WSF file is the script section. You can have as many scripts as you want
within each job. If you have multiple scripts, they will be executed sequentially. Most admin-
istrators use a single script tag for each job, but the functionality for multiple jobs is there
should you need it.

The only property you need to define for a script is the scripting language, typically VBScript
or JScript. This is accomplished by using the language attribute. You can have multiple script
languages within one job.

<job id="Main">

<script language="vbscript">

...

</script>

<script language="jscript">

...

</script>

</job>

Chapter 3: Windows Script Files 63

Creating Script Jobs
Most WSF files have a single job with a single script element, although there is nothing wrong
with multiple jobs containing multiple scripts. In the example just shown, the scripts would
run sequentially when the Main job is executed. Keep in mind that variables defined in the
first script are available to the second script, but variables defined in the second script are not
available to the first.

To create a script job, simply use a set of script tags, and put your VBScript code between them.
Remember that if you are using strict XML parsing, you need to put your code between
<![CDATA[and]]> tags.

<script language="vbscript">

<![CDATA

'your vbscript code here

]]>

</script>

Including Other Scripts
When you create a script job, you are not limited to code within the WSF file itself. You can
create a script element that references an external script by using the src property.

<script language="VBScript" src="ScriptFunctionLibrary.vbs"/>

Notice that there is no closing </script> tag because there is no code body. You can include as
many external scripts as you want.

<script language="VBScript" src="ScriptFunctionLibrary.vbs"/>

<script language="JScript" src="E:\scripts\MathFunctions.js"/>

<script language="VBScript" src="\\file01\scripts\Corporate.vbs"/>

As you can see, we still need to define the language of the referenced script. The src property
can be the script name if the reference file is in the same directory as the WSF script. If not,
you must specify the full path to the external script, as we did in the example. This is an excel-
lent way to reuse existing code. Create a VBScript file that contains your commonly used func-
tions and subroutines, and include it in your WSF file. Then you can call any function or
subroutine in the external file as though it were written directly in the WSF file. If you need to
revise a function or subroutine, you can change it in one file, and all the WSF scripts that call
it will automatically use the updated code.

Adding Resources
The body of a resource tag is used in the same way as a traditional constant, but whereas a con-
stant usually contains a single value, a resource tag can contain as many lines of information as
you would like. The tag’s body is also available to all scripts within a given job. You might use

64 Part II: Packaging Your Scripts

this tag to store script version and contact information. Use the getResource method to retrieve
the resource value.

<job>

<resource id="strAbout">

version 1.0

JDH Information Technology Solutions

http://www.jdhitsolutions.com

</resource>

...

<script language="VBScript">

'if user passes version as the first parameter then display version information

'stored in the resource tag

If InStr(Lcase(wscript.arguments.item(0)), "version") then

 MsgBox getResource("strAbout")

 Wscript.quit

End if

'script continues

</script>

</job>

Troubleshooting The resource ID is case sensitive, so if your script fails, compare the case
of the resource ID to the parameter of the getResource method.

Creating Examples and Help Text
As mentioned previously, you can use the example and description tags to display helpful infor-
mation to the user. The bodies of these tags are displayed when the ShowUsage method is
called. This is especially helpful when validating run-time syntax. If the user doesn’t specify
the correct number of parameters, you can display usage information. Let’s assume your
script needs four parameters. You might use code like this.

If wscript.arguments.count<4 then

 Wscript.echo "Missing Parameter"

 Wscript.arguments.ShowUsage.

 Wscript.quit

End if

Many command-line utilities have a /? switch to show help information. You can use this
switch with a WSF file without having to add any code. Using /? as a run-time parameter will
automatically call the ShowUsage method.

Chapter 3: Windows Script Files 65

Using Named Parameters
One advantage of a WSF script over a traditional script is the ease of passing parameters at run
time. Of course, you can pass run-time parameters with a traditional script, but processing the
values takes some extra coding, especially if there are more than two or three of them. In a tra-
ditional script, run-time parameters generally must be passed in a specific order. For example,
a script might expect the first parameter to be a server name, the second to be a username, and
the third to be a password. If the user gets these out of order, the script will probably fail.
Using named parameters with a WSF file simplifies the process and provides a few added
benefits that we’ll show you later in this chapter.

The <named> tag goes inside the <runtime></runtime> tags. Here is an example.

<named helpstring="The NetBIOS name of the server to query"_

 name="Server" required="true" type="string"/>

There are several properties that you can set inside the named tag. We’ll examine them one
by one.

The name Property

The name property is self-explanatory. At run time, the administrator would type cscript
CheckServer.wsf /server:DC01. The value of the server parameter can then be used in the
script. It is also easy set an internal variable with the value of the named argument.

strServer=wscript.arguments.named("Server")

Troubleshooting If the value you need to pass has spaces, enclose the value in quotation
marks. For example, a parameter passed as /user:Jeff Hicks will fail. The correct entry is
/user: "Jeff Hicks" You cannot include quotation marks as part of a named argument.

The helpstring Property

Any text you enter for the helpstring property will be displayed whenever the ShowUsage
method is called. This provides an easy way to document the script’s parameters. Here is a set
of named parameters.

<named helpstring="The name of the server to query"_

 name="Server" required="true" type="string"/>

<named helpstring="The username for alternate credentials"

 name="user" required="false" type="string"/>

<named helpstring="Alternate credentials password"_

 name="pass" required="false" type="string"/>

<named helpstring="Save results to a text file (True/False)._

 Default is FALSE." name="Log" required="false"type="boolean"/>

66 Part II: Packaging Your Scripts

When the ShowUsage method is called, part of the help message will be the helpstring property
you specified for each named attribute. Using the named parameters just shown, this is what
part of the help message looks like.

Options:

Server : The name of the server to query

user : The user for alternate credentials

pass : Alternate credentials pass.

Log : Save results to a text file (True/False).

 Default is FALSE.

The helpstring property is required.

The type Property

The optional type property is also self-explanatory. You can use named values of type string,
Boolean, or simple. When you use the string type, the parameter is entered as /named:value. A
simple type will pass just the named argument, such as /Trace. You can then check for the
existence of this parameter.

<named name="Trace" helpstring: "Turn on tracing" type=simple/>

...

If wscript.arguments.named.exists("Trace") then

 Wscript.echo "Turning on code tracing"

 'code tracing

End if

...

A Boolean type is a value like plus (+) or minus (-), or true or false. For example, examine the
following parameter.

<named name="Debug" helpstring: "Turn on debugging" type="Boolean"/>

At run time, the user would specify /debug:+ or /debug:true to return a positive value.

The required Property

As odd as it sounds, required is an optional property. Contrary to what you might think, setting
required to true won’t automatically enforce the requirement or even notify the user if the
parameter is omitted. If the script requires the parameter, you must add code to validate run-
time parameters. This property is for display purposes only.

Let’s look at this set of named parameters again.

<named helpstring="The name of the server to query"_

 name="Server" required="true" type="string"/>

<named helpstring="The username for alternate credentials"_

 name="user" required="false" type="string"/>

<named helpstring="Alternate credentials password"_

Chapter 3: Windows Script Files 67

 name="pass"_ required="false" type="string"/>

<named helpstring="Save results to a text file (True/False)._

 Default is FALSE." name="Log" required="false"type="boolean"/>

Only the Server parameter is required. When the ShowUsage method is called, a usage line is
displayed showing all the parameters. Optional parameters are indicated by brackets, just like
any other command-line utility.

Usage: osinfo.wsf /Server:value [/user:value] [/pass:value] [/Log[+|-]]

Viewing a Windows Script File in Action
Let’s put it all together with a modified version of the HelloWorld script from the beginning of
the chapter. Listing 3-1 has a basic WSF script.

Listing 3-1 HelloUser.wsf
<?xml version="1.0" ?>

<package>

<comment>Demo WSF File</comment>

<job>

<runtime>

<description>

HelloUser.wsf

This is a sample WSF script

</description>

<example>

cscript hellouser.wsf /user:Username [/date]

</example>

<named name="user" helpstring="Your name" type="string" _

required="True"/>

<named name="date" helpstring="Use to display current date" type="simple" _

required="False"/>

</runtime>

<script language="vbscript">

<![CDATA[

if wscript.arguments.named.Exists("user") then

 strUser=wscript.arguments.named("user")

else

 wscript.echo "Missing Parameter!"

 wscript.arguments.ShowUsage

 wscript.quit

end if

if wscript.arguments.named.Exists("date") then strMsg=" It is now " & Now

wscript.echo "Hello " & strUser & "." & vbcrlf & strMsg

]]>

</script>

</job>

</package>

68 Part II: Packaging Your Scripts

On the CD You will find this script, as well as other scripts listed in this chapter, on the
companion CD.

This script uses strict XML parsing by including a <?xml version="1.0" ?> tag, which requires
that we include the <![CDATA[tag. We defined the <runtime> tag with <description> and
<example> tags. When the ShowUsage method is called, the user will see usage information
like this.

HelloUser.wsf

This is a sample WSF script

Usage: hellouser.wsf /user:value [/date]

Options:

user : Your name

date : Use to display current date

cscript hellouser.wsf /user:Username [/date]

The named parameter date is optional, so notice how it is displayed. The body of the script is
pretty simple. We validate the parameters to verify that a user name was passed; if not, we dis-
play an error message and call the ShowUsage method.

if wscript.arguments.named.Exists("user") then

 strUser=wscript.arguments.named("user")

else

 wscript.echo "Missing Parameter!"

 wscript.arguments.ShowUsage

 wscript.quit

end if

We use a similar line of code to check if the date parameter was passed. Because this named
parameter is simple, we are only checking for its existence. If it exists, we set a variable.

if wscript.arguments.named.Exists("date") then strMsg=" It is now " & Now

We reach the main part of the script and display a personalized message to the user. The file
then ends with the closing tags.

]]>

</script>

</job>

</package>

It’s worth pointing out that you don’t have to figure out all the XML tags yourself. Many com-
mercial script editors have some sort of support for Windows Script File. Some, like OnScript

Chapter 3: Windows Script Files 69

by XLNow and Sapien’s PrimalScript, include wizards that will generate the XML-formatted
script.

Figure 3-1 displays the first screen of the PrimalScript WSF Wizard, in which we specify the
location for the script file.

Figure 3-1 Specifying the location

The next step, shown in Figure 3-2, is where we specify all the objects we want to add. Primal-
Script offers a few common choices, but we can add any object we want.

Figure 3-2 Adding the objects

70 Part II: Packaging Your Scripts

Figure 3-3 shows where to add references to external type libraries.

Figure 3-3 Adding the references

Figure 3-4 displays where to add other scripts. This is the same as using the src attribute in a
script tag.

Figure 3-4 Adding the scripts

Figure 3-5 is the last screen of the wizard.

Chapter 3: Windows Script Files 71

Figure 3-5 Finishing the wizard

PrimalScript will completely shield you from having to write any XML code. The editor dis-
plays the file in a workspace. The right pane is reserved for VBScript code and the left pane, as
shown in Figure 3-6, is an interface to the XML tags.

Figure 3-6 The PrimalScript workspace

72 Part II: Packaging Your Scripts

You can set tags such as example, description, and named through the properties of WSF. Figure
3-7 shows a dialog box for the properties of the named arguments of the HelloUser.wsf file
from Listing 3-1.

Figure 3-7 Named arguments properties

With the right editor, you can create WSF files without ever having to touch a single XML tag.

Converting an Existing Script to a WSF Utility
Hopefully by now you are intrigued and excited by the benefits of using a WSF script. You
likely have a number of scripts in your library that might be easier to use if they were WSF
files. Now we’ll show you how to take an existing script and turn it into a WSF script.

Listing 3-2 contains a script that queries WMI on a user-specified computer and displays oper-
ating system information. We won’t go through the script details, but we will show you what
parts of the script can be converted to WSF elements.

Listing 3-2 OSInfo.vbs
'OSINFO.VBS

'v3.0 July 2004

'USAGE: cscript|wscript OSINFO.VBS

'DESCRIPTION: Using WMI get operating system info for specified computer.

'Includes code to display uptime.

'NOTES: You must have admin rights on the queried system. You will be

'prompted for alternate credentials. But they can't be used on the local

'system.

On Error Resume Next

Dim objLocator,objService,objRet

Dim objShell,objNetwork

Const wbemFlagReturnImmediately=&h10

Const wbemFlagForwardOnly=&h20

Chapter 3: Windows Script Files 73

strTitle="OS Info"

strQuery="Select CSName,BootDevice,Caption,ServicePackMajorVersion," &_

"FreePhysicalMemory,FreeVirtualMemory,InstallDate,LastBootUpTime," &_

"Status,SystemDevice,TotalVirtualMemorySize,TotalVisibleMemorySize," &_

"Version,WindowsDirectory FROM Win32_OperatingSystem"

Set objShell=CreateObject("WScript.Shell")

Set objNetwork=CreateObject("wscript.network")

strSrv=InputBox("What computer do you want to query?",strTitle,_

objNetwork.ComputerName)

If strSrv="" Then WScript.Quit

'if not local system, then prompt for alternate credentials

If UCase(strSrv)<>UCase(objNetwork.ComputerName) Then

 strUser=InputBox("Enter an alternate credential account, or leave " &_

 "blank to use the current credentials.",strTitle,"")

 'if something was entered for strUser, then prompt for password

 If strUser<>"" Then

 strPass=GetIEPassword()

 End If

End If

'if computer is accessible then get information

If TestPing(strSrv) Then

 Set objLocator = CreateObject("WbemScripting.SWbemLocator")

 If Err.Number <>0 then

 strMsg= "Error " & err.number & " [0x" & CStr(Hex(Err.Number)) &_

 "] occurred in creating a locator object."

 If Err.Description <> "" Then

 strMsg=strMsg &VbCrLf & "Error description: " & Err.Description & "."

 End If

 objShell.Popup strMsg,10,strTitle,vbOKOnly+vbCritical

 Wscript.quit

End If

Set objService = objLocator.ConnectServer (strSrv,"root\cimv2",_

 strUser,strPass)

ObjService.Security_.impersonationlevel = 3

Set objRet=objService.ExecQuery(strQuery,"WQL",wbemFlagForwardOnly+_

 wbemFlagReturnImmediately)

If Err.Number<>0 Then

 strErrMsg= "Error executing query on " & UCase(strSrv) & VbCrLf

 strErrMsg= strErrMsg & "You might not have valid credentials." & VbCrLf

 strErrMsg= strErrMsg & "Error #" & err.number & " [0x" &_

 CStr(Hex(Err.Number)) &"]" & VbCrLf

 If Err.Description <> "" Then

 strErrMsg = strErrMsg & "Error description: " & Err.Description & "."

 End If

74 Part II: Packaging Your Scripts

 objShell.Popup strErrMsg,10,strTitle,vbOKOnly+vbExclamation

 wscript.quit

End If

For each item in objRet

 strInfo=item.CSNAME & vbCrlf

 strInfo=strInfo & item.Caption & " (" & item.Version & ")" & vbCrlf

 strInfo=strInfo & "Service Pack " & item.ServicePackMajorVersion & VbCrLf

 strInfo=strInfo & "Windows Directory: " & item.WindowsDirectory & vbCrlf

 strInfo=strInfo & "Boot Device: " & item.BootDevice & vbCrlf

 strInfo=strInfo & "System Device: " & item.SystemDevice & vbCrlf

 strInfo=strInfo & "Physical Memory: " &_

 FormatNumber(item.TotalVisibleMemorySize/1024,0) & "MB" & _

 " Total/" & FormatNumber(item.FreePhysicalMemory/1024,0) & "MB Free" &_

 " (" &_

 FormatPercent(item.FreePhysicalMemory/item.TotalVisibleMemorySize,0) &_

 ")" & VbCrLf

 strInfo=strInfo & "Virtual Memory: " & _

 FormatNumber(item.TotalVirtualMemorySize/1024,0) & "MB" & _

 " Total/" & FormatNumber(item.FreeVirtualMemory/1024,0) & "MB Free" & _

 " (" & FormatPercent(item.FreeVirtualMemory/item.TotalVirtualMemorySize,0)_

 & ")" & VbCrLf

 strInfo=strInfo & "Install Date: " & ConvWMITime(item.InstallDate) &_

 vbCrlf

 strInfo=strInfo & "Last Boot: " & ConvWMITime(item.LastBootUpTime) &_

 VbCrLf

 iDays=DateDiff("d",ConvWMITime(item.LastBootUpTime),Now)

 iHours=DateDiff("h",ConvWMITime(item.LastBootUpTime),Now)

 iMin=DateDiff("n",ConvWMITime(item.LastBootUpTime),Now)

 iSec=DateDiff("s",ConvWMITime(item.LastBootUpTime),Now)

 strUptime=iDays & " days " & (iHours Mod 24) & " hours " &_

 (iMin Mod 60) & " minutes " & (iSec Mod 60) & " seconds"

 strInfo=strInfo & "Uptime: " & strUptime & VbCrLf

 strInfo=strInfo & "Status: " & item.Status

Next

objShell.Popup strInfo,30,strTitle,vbOKOnly+vbInformation

strMsg="Do you want to save results to text file " & GetCurDir() &_

UCase(strSrv) & "_OSInfo.txt?" & VbCrLf &_

" Any existing file will be overwritten."

rc=MsgBox(strMsg,vbYesNo+vbQuestion,strTitle)

If rc=vbYes Then

 Dim objFSO,objFile

 Set objFSO=CreateObject("Scripting.FileSystemObject")

 Set objFile=objFSO.CreateTextFile(UCase(strSrv) & "_OSInfo.txt",True)

 objFile.Write strInfo

 objFile.WriteBlankLines(1)

 objFile.WriteLine "recorded " & Now

 objFile.Close

 objShell.Popup "Results saved to " & strSrv &_

 "_OSInfo.txt",10,strTitle,vbOKOnly+vbinformation

End If

Chapter 3: Windows Script Files 75

Else

 strMsg="Failed to ping " & UCase(strSrv) & "."

 objShell.Popup strMsg,10,strTitle,vbOKOnly+vbExclamation

End If

Wscript.quit

'End of main script

'///////////////////////////////////

' Convert WMI Time Function

'///////////////////////////////////

On Error Resume Next

Function ConvWMITime(wmiTime)

yr = left(wmiTime,4)

mo = mid(wmiTime,5,2)

dy = mid(wmiTime,7,2)

tm = mid(wmiTime,9,6)

ConvWMITime = mo&"/"&dy&"/"&yr & " " & FormatDateTime(left(tm,2) & _

":" & Mid(tm,3,2) & ":" & Right(tm,2),3)

End Function

'///

'Ping target system using WMI. Requires XP

' or Windows 2003 locally

'//

Function TestPing(strName)

On Error Resume Next

'this function requires Windows XP or 2003

Dim cPingResults, oPingResult

strPingQuery="SELECT * FROM Win32_PingStatus WHERE Address = '" &_

 strName & "'"

Set cPingResults = GetObject("winmgmts://./root/cimv2").ExecQuery(strPingQuery)

For Each oPingResult In cPingResults

 If oPingResult.StatusCode = 0 Then

 TestPing = True

 Else

 TestPing = False

 End If

Next

End Function

'///////////////////////////////////

'Use IE Password prompt

'to securely get a password

'//////////////////////////////////

Function GetIEPassword()

Dim ie

On Error Resume Next

set ie=Wscript.CreateObject("internetexplorer.application")

ie.width=400

ie.height=150

76 Part II: Packaging Your Scripts

ie.statusbar=True

ie.menubar=False

ie.toolbar=False

ie.navigate ("About:blank")

ie.visible=True

ie.document.title="Password prompt"

strHTML=strHTML & "Enter password:
"_

&"<input id=pass type=Password> "

strHTML=strHTML & "<input type=checkbox id=Clicked size=1>"_

&"click box when finished"

ie.document.body.innerhtml=strHTML

Do While ie.busy<>False

 wscript.sleep 100

Loop

'loop until box is checked

 Do While ie.Document.all.clicked.checked=False

 WScript.Sleep 250

Loop

GetIEPassword=ie.Document.body.all.pass.value

ie.Quit

set ie=Nothing

End Function

'//

'Get current path script is running in

'//

Function GetCurDir()

On Error Resume Next

 GetCurDir=Left(WScript.ScriptFullName,Len(WScript.ScriptFullName)_

-Len(WScript.ScriptName))

End Function

'EOF

To convert this to a WSF script, start by creating the tags you know you will need. We can fill
in the rest as we progress.

<?xml version="1.0" ?>

<package>

<job>

<script language="vbscript>

<![CDATA[

]]>

</script>

</job>

</package>

Chapter 3: Windows Script Files 77

The first thing we can do is take the comment section at the beginning of the script and use it
as the body of a <comment> tag.

<package>

 <comment>

OSINFO.VBS

v3.0 July 2004

Jeffery Hicks

jhicks@jhditsolutions.com http://www.jhditsolutions.com

USAGE: cscript|wscript WMIOSINFO.VBS

DESCRIPTION: Using WMI get operating system info. Includes code to

display uptime.

NOTES: You must have admin rights on the queried system. You will be

prompted for alternate credentials. But they can't be used on the local

system.

 </comment>

Next, we can take the description and notes from the comments and put them in a
<description> tag. This will be useful information to the administrator running the script.

<description>

Using WMI get operating system info.

You must have admin rights on the queried system. You will be

prompted for alternate credentials. But they can't be used on the local

system.

</description>

The existing script prompts the user for a server name. We can easily make this a named
parameter.

<named helpstring="The name of the server to query"_

 name="Server" required="true" type="string"/>

Because we can pass parameters, we can also improve the original script. Let’s ask for alternate
credentials, but we won’t make them required.

<named helpstring="The user namefor alternate credentials"

name="user" required="false" type="string"/>

<named helpstring="Alternate credentials password"_

 name="pass" required="false" type="string"/>

Finally, let’s also add a parameter to save the results to a text file. We could use a simple
named parameter, but let’s use a Boolean parameter to make it more interesting.

<named helpstring="Save results to a text file (True/False).

Default is FALSE." name="Log" required="false" type="boolean"/

78 Part II: Packaging Your Scripts

The original script has a simple usage example, but we can improve on that with the
<example> tag.

<example>

Examples:

cscript wmiosinfo.wsf /server:FILE01

cscript wmiosinfo.wsf /server:FILE01 /user:Admin /pass:P@ssw0rd

cscript wmiosinfo.wsf /server:FILE01 /user:* /pass:*

cscript wmiosinfo.wsf /server:FILE01 /user:Admin /pass:P@ssw0rd /log:TRUE

cscript wmiosinfo.wsf /?

If you use * for /server, /user or /pass, you will be prompted

You cannot use alternate credentials for local systems.

Existing log files with the same name will be overwritten.

</example>

Between the description and examples, the user will get excellent help information.

Now let’s look at the objects in the original script and think about what we might need in the
WSF script. We first need to add the Scripting.FileSystemObject, because it wasn’t in the origi-
nal file and we will need it for the log file. The other objects can be created by using object tags.
We use the same ID we used in the original script.

<object id="objFSO" progid="Scripting.FileSystemObject" reference="true"/>

<object id="objShell" progid="WScript.Shell"/>

<object id="objNetwork" progid="WScript.Network"/>

<object id="objLocator" progid="WbemScripting.SWbemLocator" _ reference="true"/>

In the original script, we had to define constants that are part of the WbemScripting.SWbem-
Locator object. In a WSF script, however, if we set the reference property to TRUE, we have full
access to the object’s type library and all constants.

The original script had several functions that are also used in other scripts. We can plan for
future scripts by building a script function library. By including this script, we have full access
to all the functions.

<script language="VBScript" src="ScriptFunctionLibrary.vbs"/>

Now we can simply copy and paste the script body from the original script into the new file
after <![CDATA[.

Because we are using object tags, we can delete the lines of code that instantiate these objects.
We can also delete the lines of code related to the InputBox prompt, because that is now
handled with named arguments.

We have to add code to validate the arguments.

if WScript.Arguments.Named.exists("Server") then

 strSrv=wscript.arguments.named("Server")

else

 wscript.echo "No Server Parameter specified!"

Chapter 3: Windows Script Files 79

 wscript.arguments.showusage

 wscript.quit

end if

if WScript.Arguments.Named.exists("user") then _ strUser=WScript.Arguments.Named("user")

if WScript.Arguments.Named.exists("pass") then _ strPass=WScript.Arguments.Named("pass")

if WScript.Arguments.Named.exists("log") then _ blnLog=WScript.Arguments.Named("Log")

The remaining edits are enhancements, such as the use of alternate credentials and logging.
Listing 3.3 shows the updated and converted script.

Listing 3-3 OSInfo.wsf
<?xml version="1.0" ?>

<package>

 <comment>

OSINFO.WSF

v3.0 July 2004

Jeffery Hicks

jhicks@jhditsolutions.com http://www.jhditsolutions.com

USAGE: cscript|wscript WMIOSINFO.VBS

DESCRIPTION: Using WMI get operating system info for specified computer.

Includes code to display uptime.

NOTES: You must have admin rights on the queried system. You will be

prompted for alternate credentials. But they can't be used on the local

system.

 </comment>

 <job>

 <runtime>

 <description>

Using WMI get operating system info.

You must have admin rights on the queried system. You will be

prompted for alternate credentials. But they can't be used on the local

system.

 </description>

 <named helpstring="The name of the server to query" _

 name="Server" required="true" type="string"/>

 <named helpstring="The user for alternate credentials"

 name="user" required="false" type="string"/>

 <named helpstring="Alternate credentials pass." name="pass"_

 required="false" type="string"/>

 <named helpstring="Save results to a text file (True/False).

 Default is FALSE." name="Log" required="false"_

 type="boolean"/>

<example>

Examples:

cscript wmiosinfo.wsf /server:FILE01

cscript wmiosinfo.wsf /server:FILE01 /user:Admin /pass:P@ssw0rd

cscript wmiosinfo.wsf /server:FILE01 /user:* /pass:*

cscript wmiosinfo.wsf /server:FILE01 /user:Admin /pass:P@ssw0rd /log:TRUE

cscript wmiosinfo.wsf /?

If you use * for /server, /user or /pass, you will be prompted

You cannot use alternate credentials for local systems.

Existing log files with the same name will be overwritten.

80 Part II: Packaging Your Scripts

</example>

 </runtime>

 <object id="objFSO" progid="Scripting.FileSystemObject" _

 reference="true"/>

 <object id="objShell" progid="WScript.Shell"/>

 <object id="objNetwork" progid="WScript.Network"/>

 <object id="objLocator" progid="WbemScripting.SWbemLocator" _

 reference="true"/>

 <script language="VBScript" src="ScriptFunctionLibrary.vbs"/>

 <script language="VBScript">

<![CDATA[

 On Error Resume Next

If WScript.Arguments.Count<1 Then

 wscript.Arguments.ShowUsage

 WScript.Quit

End If

strTitle="OS Info"

'verify user is running Windows XP

If InStr(GetOS,"XP Professional")=False Then

 objShell.Popup "This script requires Windows XP Professional",10,_

 strTitle,vbOKOnly+vbExclamation

 WScript.Quit

End If

strQuery="Select CSName,BootDevice,Caption,ServicePackMajorVersion," &_

"FreePhysicalMemory,FreeVirtualMemory,InstallDate,LastBootUpTime," &_

"Status,SystemDevice,TotalVirtualMemorySize,TotalVisibleMemorySize," &_

"Version,WindowsDirectory FROM Win32_OperatingSystem"

if WScript.Arguments.Named.exists("Server") then

 strSrv=wscript.arguments.named("Server")

else

 wscript.echo "No Server Parameter specified!"

 wscript.arguments.showusage

 wscript.quit

end if

if WScript.Arguments.Named.exists("user") then _ strUser=WScript.Arguments.Named("user")

if WScript.Arguments.Named.exists("pass") then _ strPass=WScript.Arguments.Named("pass")

if WScript.Arguments.Named.exists("log") then _ blnLog=WScript.Arguments.Named("Log")

If strSrv="*" Then

 strSrv=InputBox("What computer do you want to query?",strTitle,_

 objNetwork.ComputerName)

 If strSrv="" Then WScript.Quit

End If

'skip getting alternate credentials if Server is local system

If UCase(strSrv)<>UCase(objNetwork.Computername) Then

 If strUSer="*" Then

 strUSer=InputBox("Enter alternate credentials, or leave " &_

 "blank to use the current credentials.",strTitle,"")

 End If

Chapter 3: Windows Script Files 81

 If strPass="*" Then

 strPass=GetIEpassword()

 End If

End If

'if local system, then set any alternate credentials to blank

If UCase(strSrv)=UCase(objNetwork.ComputerName) Then

 strUSer=""

 strPass=""

End If

'if computer is accessible then get information

If TestPing(strSrv) Then

Set objService = objLocator.ConnectServer (strSrv,"root\cimv2",_

strUSer,strPass)

ObjService.Security_.impersonationlevel = 3

Set objRet=objService.ExecQuery(strQuery,"WQL",wbemForwardOnly+_

wbemFlagReturnImmediately)

If Err.Number<>0 Then

 strErrMsg= "Error executing query on " & UCase(strSrv) & VbCrLf

 strErrMsg= strErrMsg & "You might not have valid credentials." & VbCrLf

 strErrMsg= strErrMsg & "Error #" & err.number & " [0x" &_

 CStr(Hex(Err.Number)) &"]" & VbCrLf

 If Err.Description <> "" Then

 strErrMsg = strErrMsg & "Error description: " & Err.Description & "."

 End If

 objShell.Popup strErrMsg,10,strTitle,vbOKOnly+vbExclamation

 wscript.quit

End If

For each item In objRet

 strInfo=item.CSNAME & vbCrlf

 strInfo=strInfo & item.Caption & " (" & item.Version & ")" & VbCrLf

 strInfo=strInfo & "Service Pack " & item.ServicePackMajorVersion & VbCrLf

 strInfo=strInfo & "Windows Directory: " & item.WindowsDirectory & vbCrlf

 strInfo=strInfo & "Boot Device: " & item.BootDevice & vbCrlf

 strInfo=strInfo & "System Device: " & item.SystemDevice & vbCrlf

 strInfo=strInfo & "Physical Memory: " &_

 FormatNumber(item.TotalVisibleMemorySize/1024,0) & "MB" & _

 " Total/" & FormatNumber(item.FreePhysicalMemory/1024,0) & "MB Free" &_

 " (" &_

 FormatPercent(item.FreePhysicalMemory/item.TotalVisibleMemorySize,0) &_

 ")" & VbCrLf

 strInfo=strInfo & "Virtual Memory: " & _

 FormatNumber(item.TotalVirtualMemorySize/1024,0) & "MB" & _

 " Total/" & FormatNumber(item.FreeVirtualMemory/1024,0) & "MB Free" & _

 " (" &FormatPercent(item.FreeVirtualMemory/item.TotalVirtualMemorySize,0)_

 & ")" & VbCrLf

 strInfo=strInfo & "Install Date: " & ConvWMITime(item.InstallDate) &_

 VbCrLf

 strInfo=strInfo & "Last Boot: " & ConvWMITime(item.LastBootUpTime) &_

82 Part II: Packaging Your Scripts

 VbCrLf

 iDays=DateDiff("d",ConvWMITime(item.LastBootUpTime),Now)

 iHours=DateDiff("h",ConvWMITime(item.LastBootUpTime),Now)

 iMin=DateDiff("n",ConvWMITime(item.LastBootUpTime),Now)

 iSec=DateDiff("s",ConvWMITime(item.LastBootUpTime),Now)

 strUptime=iDays & " days " & (iHours Mod 24) & " hours " &_

 (iMin Mod 60) & " minutes " & (iSec Mod 60) & " seconds"

 strInfo=strInfo & "Uptime: " & strUptime & VbCrLf

 strInfo=strInfo & "Status: " & item.Status

Next

objShell.Popup strInfo,30,strTitle,vbOKOnly+vbInformation

If blnLog Then

 Set objFile=objFSO.CreateTextFile(UCase(strSrv) & "_OSInfo.txt",True)

 objFile.Write strInfo

 objFile.WriteBlankLines(1)

 objFile.WriteLine "recorded " & Now

 objFile.Close

 objShell.Popup "Results saved to " & strSrv &_

 "_OSInfo.txt",10,strTitle,vbOKOnly+vbInformation

End If

Else

strMsg="Failed to ping " & UCase(strSrv) & "."

objShell.Popup strMsg,10,strTitle,vbOKOnly+vbExclamation

End If

Wscript.quit

'End of main script

]]>

 </script>

 </job>

</package>

As you can see, with just a little work, you can turn an existing script into a full-fledged
command-line utility. But what if you would prefer a graphical interface?

In the new WSF script, we added code to prompt the user for a password if the passed argu-
ment value is a wildcard (*). We did this primarily so we could use a password dialog box for
extra security, but we can also use this technique to display a graphical interface. But how can
the user get prompted if he or she has to type a wildcard character to begin with? We use
another script.

Listing 3-4 is a regular VBScript. The sole function of this script is to launch our new WSF
script by using WScript and pass named arguments.

Chapter 3: Windows Script Files 83

Listing 3-4 RunOSInfo.vbs
Dim objShell

strCmd="wscript"

strScript="listing3-3.wsf"

strParams="/server:* /username:* /password:* /log:True"

Set objShell=CreateObject("WScript.Shell")

objShell.Run strCmd & " " & strScript & " " & strParams,1,False

WScript.Quit

When the administrator double-clicks this script, the WSF script is called with the wildcard
character for argument values. The WSF script follows its code and prompts the user for all
the necessary values.

If strSrv="*" Then

 strSrv=InputBox("What computer do you want to query?",strTitle,_

 objNetwork.ComputerName)

 If strSrv="" Then WScript.Quit

End If

'skip getting alternate credentials if Server is local system

If UCase(strSrv)<>UCase(objNetwork.Computername) Then

 If strUSer="*" Then

 strUSer=InputBox("Enter alternate credentials, or leave " &_

 "blank to use the current credentials.",strTitle,"")

 End If

 If strPass="*" Then

 strPass=GetIEpassword()

 End If

End If

We get the best of both worlds. We can use a command-line utility, or we can wrap the utility
in another script and use a graphical utility.

Creating and Using a Wrapper WSF
Let’s now look at how to use a WSF file as a wrapper script. Let’s say you have some code that
you would like to run against a list of computers. You might have the list in a text file, or per-
haps you’d like to query an Active Directory organizational unit. The wrapper script handles
the details of getting computer names. All you have to so is insert the code that will execute
against each remote machine.

84 Part II: Packaging Your Scripts

The script in Listing 3-5 uses named arguments to indicate whether to read computer names
from a text file, an organizational unit, or to use a single computer name. Here’s that section of
code.

<named helpstring="Text file to pull computer names from" name="list"_

 required="false" type="string"/>

<named helpstring="OU to pull computer names from" name="container"_

 required="false" type="string"/>

<named helpstring="Run command against single specified computer" _

name="computer" required="false" type="string"/>

The wrapper script also has optional named arguments for verbose information, recursion,
and pinging the remote computer to verify availability and logging.

<named helpstring="Use for verbose output" name="verbose" _

required="false" type="simple"/>

<named helpstring="Use with /container to include sub-OUs" _

name="recurse" required="false" type="simple"/>

<named helpstring="File to log names which can't be reached" _

name="log" required="false" type="string"/>

<named helpstring="Reduce timeout wait by pinging before connecting" _

name="ping" required="false" type="simple"/>

Listing 3-5 MultiComputer Wrapper.wsf
<?xml version="1.0" ?>

<package>

 <job id="MultiComputer" prompt="no">

 <?job error="false" debug="false" ?>

 <runtime>

 <description>

ScriptingAnswers.com - Where Windows Administrators Go To Automate

--

The shell script upon which this command is built was written by Don Jones

for ScriptingAnswers.com, and provides the following command-line arguments:

Use only one of the following:

 /list:filename : text file containing one computer name per line

 /container:ouname : name of an OU containing computer accounts

 /computer:name : run command against single specified computer

Optionally, use one or more of the following:

 /verbose : display detailed status messages

 /recurse : used with /container to include sub-OUs

 /log:filename : write unreachable computer names to specified file

 /ping : pre-test connectivity to each computer

Note that /ping argument is only available on Windows XP and later.

--

This command adds the following (if any) command-line arguments:

 (none)

--

SYNOPSIS (see above for more detailed descriptions):

 </description>

 <named helpstring="Text file to pull computer names from" _

name="list" required="false" type="string"/>

Chapter 3: Windows Script Files 85

 <named helpstring="OU to pull computer names from" name="container" _

required="false" type="string"/>

 <named helpstring="Use for verbose output" name="verbose"_

required="false" type="simple"/>

 <named helpstring="Use with /container to include sub-OUs"_

name="recurse" required="false" type="simple"/>

 <named helpstring="File to log names which can't be reached"_

 name="log" required="false" type="string"/>

 <named helpstring="Reduce timeout wait by pinging before connecting"_

 name="ping" required="false" type="simple"/>

 <named helpstring="Run command against single specified computer" _

name="computer" required="false" type="string"/>

 </runtime>

 <object id="fso" progid="Scripting.FileSystemObject"/>

 <script id="MultiComputer" language="VBScript">

<![CDATA[

'--

' ScriptingAnswers.com Gold www.scriptinganswers.com

' MEGA-MULTICOMPUTER WRAPPER SCRIPT

' by Don Jones

'--

'

' SYNOPSIS

' --------

' Accepts a list of computer names from a file, or computer

' names in specified AD organizational units, or a single

' computer name. Executes your code against each computer.

' Includes functions for logging data to a file, querying

' WMI, and querying ADSI. Also has options to ping computers

' before trying to connect, to speed up timeouts. Designed

' to be run from the command-line; run command with /?

' argument for command-line argument assistance.

'

' SUPPORT

' -------

' Support for this script is provided online ONLY in the

' forums at www.scriptinganswers.com. This script is Not

' intended to run without modification; it is a "shell,"

' or "template" script.

'

'' WARRANTY

' --------

' This script is provided AS-IS without warranty

' of any kind. Author and ScriptingAnswers.com further

' disclaims all implied warranties including, without limit,

' any implied warranties of merchantability or of fitness

' for a particular purpose. The entire risk arising out of

' the use or performance of this script remains with you,

' the user of this script. In no event shall the author,

' ScriptingAnswers.com, Don Jones, or BrainCore Nevada, Inc.

' be liable for any damages whatsoever (including, without

' limitation, damages for loss of business profits, business

' interruption, loss of business information, or other

' pecuniary loss) arising out of the use or inability to use

' this script, even if aforementioned parties have been

' advised of the possibility of such damages.

86 Part II: Packaging Your Scripts

'

' COPYRIGHT

' ---------

' This script is copyrighted by the above-named

' author and is distributed by ScriptingAnswers.com under

' license. You may use this script in your own environment

' and use it to create derivative scripts. You may distribute

' any derivative scripts, provided this text block remains

' intact and unmodified. You may not distribute this script

' as-is (e.g., not as part of a derivative script) or With

' any modifications to the code included with this script.

' In other words, you may ADD your code to this wrapper

' script, but you may not remove or modify any of the code

' that was published with this wrapper script. You may Not

' distribute the wrapper as-is, but you may distribute any

' scripts that you create using this wrapper.

'

'--

'make sure we're running from CScript, not WScript

If LCase(Right(WScript.FullName,11)) <> "cscript.exe" Then

 If MsgBox("This script is designed to work with CScript, but you are" _

"running it under WScript. " & _

 "This script may produce a large number of dialog boxes when running" _

"under WScript, which you may find to be inefficient. Do you want to" _

"continue anyway?",4+256+32,"Script host warning") = 7 Then

 WScript.Echo "Tip: Run ""Cscript //h:cscript"" from a command-line to" _

"make CScript the default scripting host."

 WScript.Quit

 End If

End If

'count arguments

Dim iArgs

If WScript.Arguments.Named.exists("computer") Then iArgs = iArgs + 1

If WScript.Arguments.Named.exists("container") Then iArgs = iArgs + 1

If WScript.Arguments.Named.exists("list") Then iArgs = iArgs + 1

If iArgs <> 1 Then

 WScript.Echo "Must specify either /computer, /container, or /list arguments."

 WScript.Echo "May not specify more than one of these arguments."

 WScript.Echo "Run command again with /? argument for assistance."

 WScript.Quit

End If

'if ping requested, make sure we're on XP or later

Dim bPingAvailable, oLocalWMI, cWindows, oWindows

bPingAvailable = False

Set oLocalWMI = GetObject("winmgmts:\\.\root\cimv2")

Set cWindows = oLocalWMI.ExecQuery("Select BuildNumber from " &_

"Win32_OperatingSystem",,48)

For Each oWindows In cWindows

 If oWindows.BuildNumber >= 2600 Then

 bPingAvailable = True

 End If

Next

Chapter 3: Windows Script Files 87

'was ping requested?

If WScript.Arguments.Named.Exists("ping") Then

 If bPingAvailable Then

 Verbose "will attempt to ping all connections to improve performance"

 Else

 WScript.Echo "*** /ping not supported prior to Windows XP"

 End If

End if

'either /list, /computer, or /container was specified:

Dim sName

If WScript.Arguments.Named("list") <> "" Then

 'specified list - read names from file

 Dim oFSO, oTS

 Verbose "Reading names from file " & WScript.Arguments.Named("list")

 Set oFSO = WScript.CreateObject("Scripting.FileSystemObject")

 On Error Resume Next

 Set oTS = oFSO.OpenTextFile(WScript.Arguments.Named("list"))

 If Err <> 0 Then

 WScript.Echo "Error opening " & WScript.Arguments.Named("list")

 WScript.Echo Err.Description

 WScript.Quit

 End If

 Do Until oTS.AtEndOfStream

 sName = oTS.ReadLine

 TakeAction sName

 Loop

 oTS.Close

Elseif WScript.Arguments.Named("container") <> "" Then

 'specified container - read names from AD

 Dim oObject, oRoot, oChild

 Verbose "Reading names from AD container " & _

WScript.Arguments.Named("container")

 On Error Resume Next

 Set oRoot = GetObject("LDAP://rootDSE")

 If Err <> 0 Then

 WScript.Echo "Error connecting to default Active Directory domain"

 WScript.Echo Err.Description

 WScript.Quit

 End If

 Set oObject = GetObject("LDAP://ou=" & WScript.Arguments.Named("container") & _

 "," & oRoot.Get("defaultNamingContext"))

 If Err <> 0 Then

 WScript.Echo "Error opening organizational unit " & _

WScript.Arguments.Named("container")

 WScript.Echo Err.Description

 WScript.Quit

 End If

 WorkWithOU oObject

Elseif WScript.Arguments.Named("computer") <> "" Then

 'specified single computer

88 Part II: Packaging Your Scripts

 Verbose "Running command against " & WScript.Arguments.Named("computer")

 TakeAction WScript.Arguments.Named("computer")

End If

'display output so user will know script finished

WScript.Echo "Command completed."

' --

' Sub WorkWithOU

'

' Iterates child objects in OU; calls itself to handle sub-OUs If

' /recurse argument supplied

' --

Sub WorkWithOU(oObject)

 For Each oChild In oObject

 Select Case oChild.Class

 Case "computer"

 TakeAction Right(oChild.Name,len(oChild.name)-3)

 Case "user"

 Case "organizationalUnit"

 If WScript.Arguments.Named.Exists("recurse") Then

 'recursing sub-OU

 Verbose "Working In " & oChild.Name

 WorkWithOU oChild

 End If

 End Select

 Next

End Sub

' --

' Sub TakeAction

'

' Makes connection and performs command-specific code

' --

Sub TakeAction(sName)

 'verbose output?

 Verbose "Connecting to " & sName

 'ping before connecting?

 If WScript.Arguments.Named.Exists("ping") Then

 If Not TestPing(sName,bPingAvailable) Then

 LogBadConnect(sName)

 Exit Sub

 End If

 End If

'---

' INSTRUCTIONS & REFERENCE

'---

' sName contains the current name to work with

'

' If /ping argument supplied, name has already

' been verified as reachable at this point.

Chapter 3: Windows Script Files 89

'

' Otherwise, need to trap for connection error

' and call LogBadConnect(sName) to log bad

' connections, if necessary.

'

' To output status messages:

' Verbose "Message"

'

' To append to a text file:

' LogFile "filename","text",False

'

' To write to a new text file, overwriting previous file:

' LogFile "filename","text",True

'

' To query WMI (simple queries): See example 1.

' To query ADSI (using LDAP or WinNT): See example 2.

'

'---

' EXAMPLE 1

'---

' Example WMI query, will prompt for password:

' Echoes OS build number for specified computers

' Uncomment lines below to try it.

'

' Dim obj, oItem

' Set obj = QueryWMI(sName,"root/cimv2","Select * from" &_

 " win32_operatingsystem","administrator","")

' If IsObject(obj) Then

' For Each oItem In obj

' WScript.Echo sName & " is at Windows build " & oItem.BuildNumber

' Next

' Else

' WScript.Echo "Couldn't get build info for " & sName

' End If

'---

' EXAMPLE 2

'---

' Example ADSI query

 ' Echoes password age for the

 ' local Administrator account from a specified

 ' list of computers. Uncomment lines below to

 ' try it. See description of function, below,

 ' for more detail.

 '

' Dim obj

' Set obj = QueryADSI(sName,"WinNT://%computer%/Administrator,user","%computer%")

' If IsObject(obj) Then

' WScript.Echo "Administrator password on " & sName & _

' " is " & obj.Get("PasswordAge") & " days old."

' Else

' WScript.Echo "Couldn't get password age from " & sName

' End If

90 Part II: Packaging Your Scripts

'###

'# COMMAND-SPECIFIC CODE GOES HERE #

'#---#

'# #

' "your code here" - see examples above

'# #

'#---#

'# END COMMAND-SPECIFIC CODE #

'###

End Sub

' --

' Sub LogBadConnect

'

' Logs failed connections to a log file. Will append if file already exists.

' --

Sub LogBadConnect(sName)

If WScript.arguments.Named.Exists("log") Then

 Dim oLogFSO, oLogFile

 Set oLogFSO = WScript.CreateObject("Scripting.FileSystemObject")

 On Error Resume Next

 Set oLogFile = oLogFSO.OpenTextFile(WScript.Arguments.Named("log"),8,True)

 If Err <> 0 Then

 WScript.Echo " *** Error opening log file to log an unreachable computer"

 WScript.Echo " " & Err.Description

 Else

 oLogFile.WriteLine sName

 oLogFile.Close

 Verbose " Logging " & sName & " as unreachable"

 End If

End If

End Sub

' --

' Function TestPing

'

' Tests connectivity to a given name or address; returns true or False

' --

Function TestPing(sName,bPingAvailable)

If Not bPingAvailable Then

 WScript.Echo " Ping functionality not available prior to Windows XP"

Exit Function

End If

Dim cPingResults, oPingResult

Verbose " Pinging " & sName

Set cPingResults = GetObject("winmgmts://./root/cimv2").ExecQuery_

("SELECT * FROM Win32_PingStatus WHERE Address = '" & sName & "'")

 For Each oPingResult In cPingResults

 If oPingResult.StatusCode = 0 Then

 TestPing = True

 Verbose " Success"

 Else

 TestPing = False

 Verbose " *** FAILED"

 End If

Chapter 3: Windows Script Files 91

Next

End Function

' --

' Sub Verbose

'

' Outputs status messages if /verbose argument supplied

' --

Sub Verbose(sMessage)

If WScript.Arguments.Named.Exists("verbose") Then

 WScript.Echo sMessage

End If

End Sub

' --

' Sub LogFile

'

' Outputs specified text to specified logfile. Set Overwrite=True To

' overwrite existing file, otherwise file will be appended to.

' Each call to this sub is a fresh look at the file, so don't Set

' Overwrite=True except at the beginning of your script.

' --

Sub LogFile(sFile,sText,bOverwrite)

Dim oFSOOut,oTSOUt,iFlag

If bOverwrite Then

 iFlag = 2

Else

 iFlag = 8

End If

Set oFSOOut = WScript.CreateObject("Scripting.FileSystemObject")

On Error Resume Next

Set oTSOUt = oFSOOut.OpenTextFile(sFile,iFlag,True)

If Err <> 0 Then

 WScript.Echo "*** Error logging to " & sFile

 WScript.Echo " " & Err.Description

Else

 oTSOUt.WriteLine sText

 oTSOUt.Close

End If

End Sub

' --

' Function QueryWMI

'

' Executes WMI query and returns results. User and Password may be

' passed as empty strings to use current credentials; pass just a blank

' username to prompt for the password

' --

Function QueryWMI(sName,sNamespace,sQuery,sUser,sPassword)

Dim oWMILocator, oWMIService, cInstances

On Error Resume Next

'create locator

Set oWMILocator = CreateObject("WbemScripting.SWbemLocator")

92 Part II: Packaging Your Scripts

If sUser = "" Then

'no user - connect w/current credentials

Set oWMIService = oWMILocator.ConnectServer(sName,sNamespace)

If Err <> 0 Then

 WScript.Echo "*** Error connecting to WMI on " & sName

 WScript.Echo " " & Err.Description

 Set QueryWMI = Nothing

 Exit Function

End If

Else

 'user specified

 If sUser <> "" And sPassword = "" Then

 'no password - need to prompt for password

 If LCase(Right(WScript.FullName,11)) = "cscript.exe" Then

 'cscript - attempt to use ScriptPW.Password object

 Dim oPassword

 Set oPassword = WScript.CreateObject("ScriptPW.Password")

 If Err <> 0 Then

 WScript.Echo " *** Cannot prompt for password " &_

 "prior to Windows XP"

 WScript.Echo " Either ScriptPW.Password " &_

 "object not present on system, Or"

 WScript.Echo " " & Err.Description

 WScript.Echo " Will try to proceed with" &_

 "blank password"

 Else

 WScript.Echo "Enter password for user '" & _

 sUser & "' on '" & sName & "'."

 sPassword = oPassword.GetPassword()

 End If

 Else

 'wscript - prompt with InputBox()

 sPassword = InputBox("Enter password for user '" &

 sUser & "' on '" & sName & "'." & vbcrlf & vbcrlf & _

 "WARNING: Password will echo to the screen. Run " &_

 "command with CScript to avoid this.")

 End if

 End If

 'try to connect using credentials provided

 Set oWMIService = _

 WMILocator.ConnectServer(sName,sNamespace,sUser,sPassword)

 If Err <> 0 Then

 WScript.Echo " *** Error connecting to WMI on " & sName

 WScript.Echo " " & Err.Description

 Set QueryWMI = Nothing

 Exit Function

 End If

 End If

Chapter 3: Windows Script Files 93

'execute query

 If sQuery <> "" Then

 Set cInstances = oWMIService.ExecQuery(sQuery,,48)

 If Err <> 0 Then

 WScript.Echo "*** Error executing query "

 WScript.Echo " " & sQuery

 WScript.Echo " " & Err.Description

 Set QueryWMI = Nothing

 Exit Function

 Else

 Set QueryWMI = cInstances

 End If

 Else

 Set QueryWMI = oWMIService

 End If

End Function

' --

' Function QueryADSI

'

' Executes ADSI query. Expects variable sQuery to include a COMPLETE

' query beginning with the provider LDAP:// or WinNT://. The query String

' may include a placeholder for the computer name, such as "%computer%".

' Include the placeholder in variable sPlaceholder to have it replaced

' with the current computer name. E.g.,

' sQuery = "WinNT://%computer%/Administrator,user"

' sPlaceholder = "%computer%

' Will query each computer targeted by the script and query their local

' Administrator user accounts.

' --

Function QueryADSI(sName,sQuery,sPlaceholder)

Dim oObject

sQuery = Replace(sQuery,sPlaceholder,sName)

On Error Resume Next

Verbose " Querying " & sQuery

Set oObject = GetObject(sQuery)

If Err <> 0 Then

 WScript.Echo " *** Error executing ADSI query"

 WScript.Echo " " & sQuery

 WScript.Echo " " & Err.Description

 Set QueryADSI = Nothing

Else

 Set QueryADSI = oObject

End If

End Function

]]>

 </script>

 </job>

</package>

94 Part II: Packaging Your Scripts

The script processes each computer in the appropriate list and sets a variable with the current
computer name. You insert your code in the TakeAction subroutine. The wrapper script
includes a few examples.

' Example WMI query, will prompt for password:

' Echoes OS build number for specified computers

' Uncomment lines below to try it.

'

' Dim obj, oItem

' Set obj = QueryWMI(sName,"root/cimv2","select * from " &_

 "win32_operatingsystem","administrator","")

' If IsObject(obj) Then

' For Each oItem In obj

' WScript.Echo sName & " is at Windows build " & oItem.BuildNumber

' Next

' Else

' WScript.Echo "Couldn't get build info for " & sName

' End If

You’ll notice that this WSF script contains all its functions and subroutines as part of the
script, even though they could have been relegated to an included library script. However,
whenever you include a library script, you have to make sure that the included script is in
the appropriate directory. This is especially problematic if you are sharing your scripts with
people outside your organization.

But there is nothing preventing you from adding your own script library. In fact, you might
find it easier to put the code you want to call in a separate script as a standalone subroutine
or function. In the wrapper script, all you need to do is call your subroutine or function.

The advantage of using a WSF wrapper script is that you use it as a command-line utility,
which makes it very easy to set up as a scheduled task The wrapper script handles all the list
processing, error handling, and logging. You simply plug in your existing code.

Summary
In this chapter, we gave you a quick overview of XML and demonstrated the features and ben-
efits of a Windows Script File. We showed you a WSF in action and walked you through con-
verting an existing VBScript file to a WSF. These types of scripts take a little longer to develop
and can be daunting at first; but with a little experience, you will learn where you can exploit
this script format. It isn’t the right solution for every problem, but it’s another tool for your
administrative scripting toolbox.

More Info For more information visit the Microsoft Web site at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html
/wsorixmlelements.asp

(This link is on the companion CD; click MSDN XML Elements.) ScriptingAnswers.com also
offers a training video, Windows Script Files Unmasked, that covers this topic in detail.

95

Chapter 4

Windows Script Components

In this chapter:

Understanding COM Objects, Methods, and Properties . 95

Understanding Windows Script Components . 96

Using the Script Component Wizard . 101

Working with Properties . 105

Working with Methods. 107

Working with Events . 108

Creating a Windows Script Component with a Script Editor 112

Viewing a Windows Script Component in Action . 120

Summary . 124

If you’ve developed complex VBScript code that you want to use in other scripts, packaging it
into a Windows Script Component is a good way to do that. By turning your code into a com-
ponent, you can use it as you would any other COM object. The Windows Script Component
is packaged in an XML format, but there is an easy way to generate an XML skeleton, which
we’ll walk you through. We will also give you an overview on COM. Finally, we’ll show you a
Windows Script Component in action.

Like many developers, you probably have some complex scripts, or perhaps just a few func-
tions, that you’d like to use in other scripts. You could copy and paste, but this just adds to the
length and complexity of the new script. You could create your script as a Windows Script File
and reference external scripts, but you might not need a WSF. One solution is to create your
own Component Object Model (COM) object out of the reusable code, and use that new
object in your script. You don’t run a component like script, but rather instantiate the compo-
nent within your script in the same way you instantiate an object like WshShell.

Understanding COM Objects, Methods, and Properties
Traditional COM programming is beyond the scope of this book, but we will provide a brief
overview on the topic, which you might know more about than you realize.

Think of a COM object as a black box full of programming that accomplishes a set of related
tasks. We don’t need to know what’s in the box, just how to use it. To use the code in the box,
the programmer first assigns a name, or progid, to the object so he can tell WScript to create,

96 Part II: Packaging Your Scripts

or instantiate, an instance of that object. The programmer also assigns a globally unique iden-
tifier (GUID) called the classid. These values are stored in the registry when the object is reg-
istered on the computer.

Next, the programmer creates interfaces on the outside of the box to manipulate the code
inside. You use these interfaces when you work with an object’s properties or methods. A
property is a value, such as the Username property of the Wscript.Network object. Some prop-
erties are read-only, but others you can change. Most COM objects also expose a method that
calls internal code to perform a task, for example, to map a network drive. We aren’t interested
in the code that creates the drive mapping; it might be very complex. The COM object simpli-
fies it and gives us an uncomplicated method; for example, MapNetworkDrive.

Typically, COM objects are compiled into a dynamic link library (.dll) file. This file must
be registered on a computer before it can be used. The registration usually occurs as part
of an application installation, but you can use regsvr32.exe to manually register a file. Type
regsvr32 /? in a command prompt window to see the help information about this utility.

ActiveX, COM, and OLE
When you hear about ActiveX, it often brings to mind Internet Explorer ActiveX
controls, but that is just a specific implementation. ActiveX actually refers to all of
Microsoft’s application component programming technologies, including OLE and
COM. These technologies allow applications to share information.

OLE (Object Linking and Embedding) is a legacy approach. If you’ve ever embedded a
Microsoft Excel spreadsheet in a Microsoft Word document, you used OLE. The OLE
object connects the embedded spreadsheet to its application, Microsoft Excel.

COM was introduced in the early 1990s as part of Microsoft’s approach to object-
oriented programming. COM objects provide interfaces and communication mecha-
nisms that programmers can manipulate to build larger applications. ActiveX is the
latest incarnation of COM.

Understanding Windows Script Components
A Windows Script Component (WSC) file is a type of script file that can be used as a COM
object in VBScript or JScript scripts. A script component takes complex code and provides a
simpler interface. For example, you might have a subroutine that connects to a SQL database
and returns information about a specific computer. With a script component, you can simplify
the functionality by creating a COM object and utilizing the object’s interfaces to execute
the code.

The script component isn’t a true COM object because it is not compiled. It is actually a spe-
cially formatted XML file that you can create and edit with any text or script editor. The WSC

Chapter 4: Windows Script Components 97

is used like a COM object, but the script component library, Scrobj.dll, does all the hard work
of translating the WSC into standard COM interfaces. You don’t have to worry about develop-
ing a complex, compiled COM object; you can just take advantage of COM features by using
a WSC file.

The XML file consists of the following tags:

■ The package tag is used much the same way it is used in a Windows Script File—as the
wrapper tag. If you have only one component, this tag is optional; with multiple compo-
nents, your file will start and end with package tags.

■ The component tag, like the job tag in a Windows Script File, contains all the elements of
your component. You can have more than one component in your file, but as a practical
matter, we think you’ll find it easier to have a single component per file. This tag has an
id property that you should set.

<component id="JDHIT.Demo">

Setting this is required if you have more than one component or if you plan on generat-
ing a type library. We recommend making it the same as the script component’s progid.

■ The ?component tag has error and debug flags that are set as either TRUE or FALSE. In
production, COM objects, including WSC files, run silently. However, during develop-
ment, you might want to use the ?component tag to facilitate debugging and trouble-
shooting. If you set error to TRUE, script errors within the component file that generate
messages will be displayed to the user. If you are using a script debugger, you can set
debug to TRUE as well.

<?component error="true" debug="false" ?>

Notice the use of a question mark instead of a slash character to close the tag. Before put-
ting your component into production, we recommend setting these flags to FALSE.

■ The registration tag contains all the information needed to register your component.
Even though all the tag properties are optional, from a practical standpoint, you really
should define most of them.

<registration progid="JDHDemo.WSC"

classid="{443fdeb9-7d32-4331-b289-dd3b8da3d9d5}"

description="JDHDemo" remotable="yes" version="1.00">

</registration>

The registration tag’s properties include the following:

❑ The progid property is the name you will use when you create an instance of the
object in your script.

❑ The classid property reflects the GUID of your new object. Don’t just type in any
number. You need to use a utility like uuidgen.exe or a script component wizard to
generate a proper value.

98 Part II: Packaging Your Scripts

❑ The description property is used in the registry to describe your object. You can see
this value when you use a COM object browser. Keep this value short.

❑ The remoteable property is a Boolean flag that dictates whether the COM object
can be instantiated on a remote system through Distributed COM (DCOM). The
object must be installed and registered on the remote system before you can use it.
When you create a remote instance, the script treats the object as though it were
running locally. However, all properties and methods are executed from the
remote system, depending on credentials and security settings.

❑ The version property is used for internal version information. This data is stored in
the registry.

■ The public tag is used to identify the publicly available methods and properties of an
object.

<public>

 <property name="size">

 <get/>

 </property>

 <property name="modified">

 <get/>

 </property>

 <property name="linecount">

 <get/>

 </property>

 <method name="view">

 </method>

</public>

■ The event tag is used to define events that you can call, or fire, from within your script
component. An event is some action that occurs while the script is running, such as a file
changing size. You define what that action is. When the action is detected, you fire the
event. The fired event essentially raises a flag that something happened. You can add
code to take further steps depending on the nature of the event. You must define the
name property.

<event name="sizechanged"/>

■ The script tag has the same role as the tag with this name in a Windows Script File. The
body of this tag contains all the functions and subroutines that are called to execute the
object’s properties and methods. The script code is hidden within the black box and
exposed through the object’s properties and methods.

Important Even though we talk about code being “hidden,” we don’t mean it liter-
ally. Unlike a traditional COM object that is compiled, a WSC file is plain text that anyone
can view with a text editor. Don’t hard-code administrator credentials, passwords, or any
other information you don’t want made public.

Chapter 4: Windows Script Components 99

■ The object tag, like the tag with this name in a WSF script, is used to make the external
object globally available. Without this tag, you would have to use CreateObject through-
out your script.

<object id=objFSO progid="Scripting.FileSystemObject"/>

■ The resource tag, like the tag with this name in a WSF script, is used to define constants
that you want to use throughout the component. The id property is used to identify the
resource body in your script.

<resource id="version">JDHIT Demo v1.0</resource>

...

<script language="VBScript">

...

Function ShowVersion()

 strVer=getResource("version")

 ShowVersion=MsgBox(strVer,vbokonly+vbinformation,"Version")

End Function

...

■ The comment tag is used within other script elements to provide comments or documen-
tation.

<public>

 <comment>

 Get the file size of the specified file. Data returned is in bytes.

 </comment>

 <property name="size">

 <get/>

 </property>

</public>

Best Practices We encourage you to use comment blocks liberally throughout your script
component file. You might understand what every property and method is supposed to do
right now, but you might not recall next year. In addition, comments make it easier for other
people to understand and troubleshoot the file.

Listing 4-1 is a skeleton outline for a WSC file.

Listing 4-1 WSC Skeleton
<?XML version="1.0"?>

<package>

<?component error="true" debug="true"?>

 <comment>

 This skeleton shows how script component elements are

 assembled into a .wsc file.

 </comment>

<component id="MyScriptlet">

 <registration

100 Part II: Packaging Your Scripts

 progid="progID"

 description="description"

 version="version"

 clsid="{00000000-0000-0000-000000000000}"/>

 <reference object="progID">

 <public>

 <property name="propertyname"/>

 <method name="methodname"/>

 <event name="eventname"/>

 </public>

 <script language="VBScript">

 <![CDATA[

 dim propertyname

 Function methodname()

 ' Script here.

 End Function

]]>

 </script>

 <object id="objID" progId="some.object">

 <resource ID="resourceID1">string or number here</resource>

 <resource ID="resourceID2">string or number here</resource>

</component>

</package>

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

Keep in mind that if your formatting is incorrect, the script component will fail. Fortunately,
Microsoft offers a free utility called the Script Component Wizard that will create a framework
on which to build your component. You can download the wizard at

http://www.microsoft.com/downloads/details.aspx?FamilyId=408024ED-FAAD-4835-8E68-
773CCC951A6B&displaylang=en

On the CD This link, like most of the links referenced in this book, is included on the com-
panion CD. Click Script Component Wizard.

You can also search for information at the following Web site.

http://msdn.microsoft.com/scripting

Chapter 4: Windows Script Components 101

Using the Script Component Wizard
The Script Component Wizard creates a WSC file in a user-specified location. It will prompt
you for the names of properties, methods, and events to expose, and then create the appropri-
ate registration information, including a GUID.

As an example, we will build a script component that will make it easier to work with a user
object in Active Directory. We want an object that will get the user’s distinct name, given the
sAMAccountName, as well as the other way around. We’d also like to be able to set a user’s
password with a single line of code. Finally, we want to get the date when the user object was
created, when it was last modified, and the organizational unit to which it belongs. We’ll
use the Script Component Wizard to build an XML skeleton. The wizard (scriptwz.exe) is
installed by default in C:\Program Files\Microsoft Windows Script\Component Wizard.

In Figure 4-1, the wizard prompts us for information about the new WSC file.

Figure 4-1 Defining the script component

On Step 2 of the wizard, shown in Figure 4-2 on the next page, we specify component charac-
teristics, such as scripting language and whether to enable error checking or debugging.

102 Part II: Packaging Your Scripts

Figure 4-2 Defining script component characteristics

We now define the properties we want to expose. We will specify the names and type of our
properties. The values we are returning from Active Directory are read-only, so that is the type
we will select. Figure 4-3 shows all the options. Don’t worry if you forget a property. You can
always edit the file and add the appropriate XML tags later.

Figure 4-3 Defining script component properties

On Step 4 of the wizard, shown in Figure 4-4, we define the component’s methods. We create
a method called getsam that takes a variable called strDN as a parameter that returns the DN.
The getDN method returns the sam for the passed DN. We also create a changepassword
method.

Chapter 4: Windows Script Components 103

Figure 4-4 Defining script component methods

If we had any events to add, we would define them on Step 5 of the wizard, as shown in
Figure 4-5.

Figure 4-5 Defining script component events

The wizard’s last step, shown in Figure 4-6 on the next page, is a summary of what we have
specified. We can click Back to make any corrections, or click Finish to create the WSC file.
Our finished WSC shell is shown in Listing 4-2, also on the next page.

104 Part II: Packaging Your Scripts

Figure 4-6 Finishing the Windows Script Component Wizard

Listing 4-2 Script Component Wizard Shell
<?xml version="1.0"?>

<component>

<?component error="true" debug="false"?>

<registration

 description="ADUser"

 progid="ADUser.WSC"

 version="1.00"

 classid="{bbe2f493-434e-472f-b0f3-2f267fa17b62}"

>

</registration>

<public>

 <property name="whencreated">

 <get/>

 </property>

 <property name="whenmodified">

 <get/>

 </property>

 <property name="ou">

 <get/>

 </property>

 <method name="getsam">

 <PARAMETER name="strDN"/>

 </method>

 <method name="getdn">

 <PARAMETER name="strSAM"/>

 </method>

 <method name="changepassword">

 <PARAMETER name="strSAM"/>

 <PARAMETER name="strPassword"/>

Chapter 4: Windows Script Components 105

 <PARAMETER name="BlnChangeNextLogon"/>

 </method>

</public>

<script language="VBScript">

<![CDATA[

dim whencreated

dim whenmodified

dim ou

function get_whencreated()

 get_whencreated = whencreated

end function

function get_whenmodified()

 get_whenmodified = whenmodified

end function

function get_ou()

 get_ou = ou

end function

function getsam(strDN)

 getsam = "Temporary Value"

end function

function getdn(strSAM)

 getdn = "Temporary Value"

end function

function changepassword(strSAM,strPassword,BlnChangeNextLogon)

 changepassword = "Temporary Value"

end function

]]>

</script>

</component>

All that remains is to add documentation comments and the VBScript code that will execute
our functions.

Working with Properties
In a WSC, you can work with properties in two ways. First, you can have a simple, preset prop-
erty name defined like this.

<property name="user" />

106 Part II: Packaging Your Scripts

In the script section, you can then define values for this property, assuming you defined the
property as read/write.

<script language="VBScript">

<![CDATA[

'define user property

User="Test User 98"

...

The other way to work with properties is to return a value from a function. In Listing 4-2, the
property values are calculated by functions.

<property name="whencreated">

 <get/>

</property>

...

function get_whencreated()

 get_whencreated = whencreated

end function

The Script Component Wizard produces an outline. We need to develop the script code in the
functions and modify the property tags. For the whencreated property, we will enter a user’s
distinct name as a parameter. We can modify the property element to reflect this change, and
update the function with the necessary code.

<property name="whencreated">

 <get/>

</property>

...

Function get_whencreated(strDN)

On Error Resume Next

 Set objUser=GetObject("LDAP://" & strDN)

 If Err.Number<>0 Then

 get_whencreated="Not Found"

 Else

 get_whencreated = ObjUser.whencreated

 End If

end Function

We add strDN as a parameter for the function. You probably also noticed the get tag. This
tag identifies the property as read-only. To make a property read/write, add a put tag. These
actions, get and put, are standard COM commands for dealing with properties. You’ll notice
that the associated function for the whencreated property is get_whencreated. This helps us
remember that we are reading a property value.

Chapter 4: Windows Script Components 107

Tip The get tag can use an attribute called internalname. You can use the internalname
attribute for the name of an internal function.

<property name="size">

 <get internalname="readsize"/>

</property>

...

Function readsize(strFile)

 'function code here to read file size

 readsize="some value"

End function

If you don’t specify an internal name, the associated function will use the property name. You
should use an internal name for longer or more complex WSC files to make it easy to remem-
ber what a particular function is supposed to do. The name attribute of the property tag is for
the user. You might want to use something simpler and more meaningful for internal use.

Working with Methods
Using methods in a WSC file is very similar to working with properties. Generally, the method
name is the name of a function or subroutine that is executed. You can also use the internal-
name attribute if you want to use a different name for the function or subroutine.

<method name="changepassword">

 <PARAMETER name="strSAM"/>

 <PARAMETER name="strPassword"/>

 <PARAMETER name="BlnChangeNextLogon"/>

</method>

function changepassword(strSAM,strPassword,BlnChangeNextLogon)

 'code to run goes here

 changepassword = "Temporary Value"

end function

The changepassword method in this example requires three parameters. Anyone who uses this
object needs to know what the parameters are to use the method. You can document this
information within the WSC file, or you can generate a type library. If you want to generate a
type library for your WSC file, you must add the parameter tags for the method.

Type Libraries
A type library provides information about an object’s automation properties and meth-
ods. Type libraries are included with most good script editors and are used by COM
object browsers so you can learn how to use an object. If your script editor offers Intel-
lisense, the type library is used to populate the Intellisense drop-down menus with
object information. Some script editors, like PrimalScript, will generate the type library
for you when you right-click the component and click Generate Type Library. You can
also right-click the WSC file in Windows Explorer and click Generate Type Library.
There are a few other methods; see the Windows Script Component section of the
Windows Script Host documentation for more information.

108 Part II: Packaging Your Scripts

Working with Events
Depending on your component, you might want to include support for events. An event is an
action such as a window closing, or a change in state like a saved file. In a WSC file, you deter-
mine what the event is and when to call it. An event is defined within the public section along
with properties and methods.

<event name="UserAdded" />

You use the fireevent method to fire the event in your WSC code. For example, you might have
a method called AddUser, and you want to fire the UserAdded event when this method is com-
pleted.

<method name="adduser" internalname="NewUser">

 <parameter name=""strSAM"/>

</method>

<script language="VBScript">

<![CDATA[

function NewUser(strSAM)

 'code to create to new user goes here

 fireEvent "UserAdded"

End function

]]>

</script>

The WSC file doesn’t do anything with the event other than define and fire it. The script using
the object determines what to do, if anything. To facilitate this decision, include a sink in the
script that is connected to the event. A sink is an object that attracts external interactions,
much like a kitchen sink attracts water. The sink waits for something to happen, and when it
does, it is contacted by external sources. This is part of DCOM programming, but you don’t
have to know much more than that. When the event fires, the code in the sink is executed. You
might have something like this.

Dim objWSC

Set objWSC=CreateObject("MyObject.wsc","sink_")

objWSC.AddUser("jhicks")

'insert other code here

Wscript.disconnectObject objWSC

wscript.quit

Function sink_UserAdded()

 MsgBox "A new user was added."

End function

When you instantiate the object, you also define a prefix that is tied to the event name. These
actions create the sink. When the event fires, the code in the corresponding function or sub-
routine, in this example obj_UserAdded, is executed. Events are useful because they can occur
at any time in the script. You can start a long process, run other code, and wait for the event
to happen. However, if you exit the script before the event fires, you’ll never know if it fired. If

Chapter 4: Windows Script Components 109

you want the event code sink to run, you’ll need to add code that prevents the script from end-
ing until the event occurs. One way of doing this is to create a message box. As long as you
don’t dismiss the message box, the script is running. After the event fires, you can dismiss the
message box and exit the script.

You can also have an event return information by defining one or more parameters.

<event name="UserAdded">

 <parameter name="strSAM">

 <parameter name="strDN">

</event>

When you call fireevent, you pass the parameters at that time.

function NewUser(strSAM)

 'code to create to new user goes here

 'code to define strDN

 fireEvent "UserAdded",strSAM,strDN

End function

You can then use this information in your sink code.

Function sink_UserAdded(strSAM,strDN)

 MsgBox "User " & strSAM & " is " & strDN & "."

End function

We don’t have any events in our ADUser.wsc example, but the finished file is shown in
Listing 4-3.

Listing 4-3 ADUser.wsc
<?xml version="1.0" ?>

<component>

 <?component error="true" debug="false" ?>

 <registration progid="ADUser.WSC"

 classid="{bbe2f493-434e-472f-b0f3-2f267fa17b62}"

 description="ADUser" version="1.00">

 </registration>

 <public>

 <property name="whencreated">

 <get/>

 </property>

 <property name="whenmodified">

 <get/>

 </property>

 <property name="ou">

 <get/>

 </property>

 <method name="getsam">

 <parameter name="strDN"/>

 </method>

 <method name="getdn">

 <parameter name="strSAM"/>

 </method>

110 Part II: Packaging Your Scripts

 <method name="changepassword">

 <parameter name="strUser"/>

 <parameter name="strPassword"/>

 <parameter name="blnChangeNextLogon"/>

 </method>

 </public>

 <object id="cmd" progid="ADODB.Command" events="true" reference="false"/>

 <object id="conn" progid="ADODB.Connection" events="true" reference="false"/>

 <script language="VBScript">

<![CDATA[

dim whencreated

dim whenmodified

dim ou

Function get_whencreated(strDN)

On Error Resume Next

 Set objUser=GetObject("LDAP://" & strDN)

 If Err.Number<>0 Then

 get_whencreated="Not Found"

 Else

 get_whencreated = ObjUser.whencreated

 End If

end Function

function get_whenmodified(strDN)

On Error Resume Next

 Set objUser=GetObject("LDAP://" & strDN)

 If Err.Number<>0 Then

 get_whenmodified="Not Found"

 Else

 get_whenmodified = ObjUser.whenchanged

 End If

end function

function get_ou(strSAM)

On Error Resume Next

strDN=getdn(strSAM)

Set objUser=GetObject("LDAP://" & strDN)

 If Err.Number<>0 Then

 get_ou="Not Found"

 Exit function

 Else

 strParent=objUser.Parent

 set objParent=GetObject(strParent)

 get_ou=objParent.name

 End If

end function

function getsam(strDN)

On Error Resume Next

Set RootDSE=GetObject("LDAP://RootDSE")

Set myDomain=GetObject("LDAP://"&RootDSE.get("DefaultNamingContext"))

Chapter 4: Windows Script Components 111

strQuery="Select sAMAccountname,cn,distinguishedname from '" & _

myDomain.AdsPath & "' Where objectcategory='person' AND objectclass=" _

"'user'" & " AND distinguishedname='" & strDN & "'"

set cat=GetObject("GC:")

for each obj In cat

 set GC=obj

Next

conn.Provider="ADSDSOObject"

conn.Open "Active Directory Provider"

cmd.ActiveConnection=conn

cmd.Properties("Page Size") = 100

cmd.Properties("asynchronous")=True

cmd.Properties("Timeout") =30

cmd.Properties("Cache Results") = False

cmd.CommandText=strQuery

set RS=cmd.Execute

Do While not RS.EOF

 GetSAM=rs.Fields("samAccountname")

 rs.movenext

Loop

If GetSAM="" Then GetSAM="Not Found"

rs.Close

conn.Close

end function

function getdn(strSAM)

On Error Resume Next

Set RootDSE=GetObject("LDAP://RootDSE")

Set myDomain=GetObject("LDAP://"&RootDSE.get("DefaultNamingContext"))

strQuery="Select sAMAccountname,cn,distinguishedname from '" & _

myDomain.AdsPath & "' Where objectcategory='person' AND objectclass=" _

"'user'" & " AND sAMAccountName='" & strSAM & "'"

set cat=GetObject("GC:")

for each obj In cat

 set GC=obj

Next

conn.Provider="ADSDSOObject"

conn.Open "Active Directory Provider"

cmd.ActiveConnection=conn

cmd.Properties("Page Size") = 100

cmd.Properties("asynchronous")=True

cmd.Properties("Timeout") =30

cmd.Properties("Cache Results") = False

cmd.CommandText=strQuery

set RS=cmd.Execute

112 Part II: Packaging Your Scripts

Do While not RS.EOF

 GetDN=rs.Fields("distinguishedname")

 rs.movenext

Loop

If GetDN="" Then GetDN="Not Found"

rs.Close

conn.Close

end Function

function changepassword(strSAM,strPassword,BlnChangeNextLogon)

'returns TRUE if successful

On Error Resume Next

strDN=getdn(strSAM)

Set objUser=GetObject("LDAP://" & strDN)

If Err.number<>0 Then

 changepassword=MsgBox("Failed to find user " & _

 strSAM,vbOKOnly+vbInformation,"Change Password Error")

 changepassword=False

 Exit Function

else

 objUser.setPassword strPassword

 objUser.SetInfo

 If Err.Number<>0 Then

 strMsg="Failed to set password For " & strSAM & VbCrLf & _

 "Error #" & Err.Number & " " & Err.Description

 MsgBox strMsg,vbOKOnly+vbCritical,"Password Failure"

 changepassword=False

 Exit Function

 Else

 If BlnChangeNextLogon then

 objUser.put "pwdLastSet", 0

 objUser.SetInfo

 End If

 changepassword = True

 End If

End If

end Function

]]>

 </script>

</component>

Creating a Windows Script Component with
a Script Editor

The Script Component Wizard is not the only way to create a WSC file. Some commercial
script editors such as OnScript by XLNow and PrimalScript by SAPIEN include their own

Chapter 4: Windows Script Components 113

versions of the Script Component Wizard. Editors also have their own approaches to editing
a WSC file. Let’s walk through the PrimalScript 4.0 wizard.

Figure 4-7 displays the first page of the wizard, in which we define our script location.

Figure 4-7 Creating a new project

On the wizard’s next page, shown in Figure 4-8, we fill in some general information about the
component such as name, location, and primary script language.

Figure 4-8 Filling in general information

114 Part II: Packaging Your Scripts

On the wizard’s next page, we are prompted to specify the objects we want to include, shown
in Figure 4-9. PrimalScript offers a list of commonly used objects, and you can click Browse to
add any other registered object.

Figure 4-9 Adding objects

If we want to add any references, we can do so on the wizard’s next page, shown in
Figure 4-10.

Figure 4-10 Adding references

On the wizard’s next page, shown in Figure 4-11, we can add any function libraries or other
scripts.

Chapter 4: Windows Script Components 115

Figure 4-11 Adding files

The wizard’s last page is a summary, shown in Figure 4-12.

Figure 4-12 Wizard summary

PrimalScript opens the file in a workspace, much the same way it handles WSF script. The edi-
tor masks all the XML code and leaves the main editing pane open for your VBScript. To add
methods and properties, right-click Interface in the left pane, and click the appropriate menu
choice, as shown in Figure 4-13 on the next page.

116 Part II: Packaging Your Scripts

Figure 4-13 Adding methods and properties

In Figure 4-14, we add and define a property. In this example, the internal and external names
are different. The external name will be used in the generated type library, so it is more user
friendly. We’ll use the internal name for our functions.

Figure 4-14 Adding a property

We follow a similar process in Figure 4-15 to add methods to the script file.

Figure 4-15 Adding a method

Chapter 4: Windows Script Components 117

After you add the component’s methods, properties, and events, all you need to do is write the
underlying code. When you are finished, right-click the component in the left pane, and reg-
ister the component. PrimalScript will also generate a type library. Now your component is
ready to use. The finished script component is in Listing 4-4.

Listing 4-4 FilePlus.wsc
<?xml version="1.0" ?>

<package>

 <comment>

 Use this component for easy file operations such as returning

 file size and modified date. Includes functions to return linecount,

 the first X number of lines in the file or the last X number of

 lines in the file. Also a view method to open the file in Notepad.

 </comment>

 <component id="FilePlus">

 <?component error="true" debug="false" ?>

 <registration progid="FilePlus.WSC"

 classid="{DB619F63-768F-4746-BCDC-88F5DA1EBB42}"

 description="FilePlus" remotable="no" version="1.0">

 <script language="VBScript">

<![CDATA[

 Function Register()

 Dim TypeLib

 Set TypeLib = CreateObject("Scriptlet.TypeLib")

 TypeLib.AddURL "FilePlus.WSC"

 TypeLib.Path = "FilePlus.tlb"

 TypeLib.Doc = "FilePlus"

 TypeLib.Name = "FilePlus.tlb"

 TypeLib.MajorVersion = 1

 TypeLib.MinorVersion = 0

 TypeLib.Write

 End Function

 Function Unregister()

 End Function

]]>

 </script>

 </registration>

 <public>

 <property internalname="strFile" name="filename">

 <get/>

 <put/>

 </property>

 <property name="linecount">

 <get/>

 </property>

 <property internalname="readsize" name="size">

 <get/>

 </property>

 <property internalname="readmodified" name="modified">

 <get/>

118 Part II: Packaging Your Scripts

 </property>

 <method name="view">

 </method>

 <method name="head">

 <parameter name="numLines"/>

 </method>

 <method name="tail">

 <parameter name="numLines"/>

 </method>

 </public>

<object id="objFSO" progid="Scripting.FileSystemObject"

events="false" reference="TRUE"/>

<object id="objShell" progid="WScript.Shell" events="false" reference="TRUE"/>

 <script id="FilePlus" language="VBScript">

<![CDATA[

Dim linecount

dim strFile

Dim readsize

Dim readmodified

strFile = 0

linecount = 0

readsize = 0

readmodified = 0

Function get_strFile()

 get_strFile = strFile

End Function

Function put_strFile(newValue)

 strFile = newValue

End Function

Function view()

On Error Resume Next

'open file in Notepad

If objFSO.FileExists(strFile) Then

 view = objShell.Run("Notepad " & strFile,1,False)

Else

 view=MsgBox("File " & strFile & " not found!",vbOKOnly+vbCritical,"Error!")

End If

End Function

Function get_linecount()

On Error Resume Next

If objFSO.FileExists(strFile) Then

 Set objFile=objFSO.OpenTextFile(strFile,ForReading)

 i=0

 Do While objFile.AtEndOfStream<>True

 objFile.ReadLine

 i=i+1

 Loop

 objFile.Close

Chapter 4: Windows Script Components 119

 get_linecount=i

Else

 get_linecount =0

End If

End Function

Function get_readsize()

On Error Resume Next

If objFSO.FileExists(strFile) Then

 Set objFile=objFSO.GetFile(strFile)

 get_readsize = objFile.size

Else

 get_readsize=0

End If

 'get_readsize = readsize

End Function

function get_readmodified()

On Error Resume Next

If objFSO.FileExists(strFile) Then

 Set objFile=objFSO.GetFile(strFile)

 get_readmodified = objFile.DateLastModified

Else

 get_readmodified=0

End If

end function

function head(numLines)

On Error Resume Next

'Display X number of lines from beginning of file

If objFSO.FileExists(strFile) Then

 Set objFile=objFSO.OpenTextFile(strFile,ForReading)

 i=0

 Do While i<numLines

 strData=strData & objFile.ReadLine & VbCrLf

 i=i+1

 Loop

 objFile.Close

 head = strData

Else

 head=MsgBox("File " & strFile & _

 " not found!",vbOKOnly+vbCritical,"Error!")

End If

end Function

function tail(numLines)

On Error Resume Next

If objFSO.FileExists(strFile) Then

 Set objFile=objFSO.OpenTextFile(strFile,ForReading)

 strText=objFile.ReadAll

 objFile.Close

 tmpArray=Split(strText,VbCrLf)

 iCount=get_linecount()

120 Part II: Packaging Your Scripts

 iLimit=iCount-numLines

 For x= iLimit To iCount

 strData=strData & tmpArray(x) & VbCrLf

 Next

 tail = strData

Else

 tail=MsgBox("File " & strFile & _

 " not found!",vbOKOnly+vbCritical,"Error!")

End If

end Function

]]>

 </script>

 </component>

</package>

Viewing a Windows Script Component in Action
Let’s go through the FilePlus component and see it in action. The first thing to look at is the
comment section, which gives a broad overview of the component’s functionality.

<comment>

Use this component for easy file operations such as returning

file size and modified date. Includes functions to return linecount,

the first X number of lines in the file or the last X number of

lines in the file. Also a view method to open the file in Notepad.

</comment>

The name of the component is FilePlus and it will be registered as FilePlus.WSC.

<component id="FilePlus">

<?component error="true" debug="false" ?>

<registration progid="FilePlus.WSC"

classid="{DB619F63-768F-4746-BCDC-88F5DA1EBB42}"

description="FilePlus" remotable="no" version="1.0">

The component has a read/write property called filename and read-only properties called
linecount, size, and modified.

<property internalname="strFile" name="filename">

 <get/>

 <put/>

</property>

<property name="linecount">

 <get/>

</property>

<property internalname="readsize" name="size">

 <get/>

</property>

<property internalname="readmodified" name="modified">

 <get/>

</property>

Chapter 4: Windows Script Components 121

Notice that size and modified have internal names defined because we want a friendly name for
the external property name, and a more meaningful name for internal use.

The component has three methods, view, head, and tail. The last two methods require a
parameter to indicate the number of lines of text to return.

<method name="view">

</method>

<method name="head">

 <parameter name="numLines"/>

</method>

<method name="tail">

 <parameter name="numLines"/>

</method>

Because we are relying on the Scripting.FileSystemObject so much, it makes sense to define it
with an object tag at the beginning of the component. After it is included, we won’t have to
define it in every function. We will do the same thing with WshShell object.

<object id="objFSO" progid="Scripting.FileSystemObject" events="false" reference="TRUE"/>

<object id="objShell" progid="WScript.Shell" events="false" reference="TRUE"/>

The rest of the component is the VBScript that supports the properties and methods. Each
property and method has its own function. We won’t go through the details of each function,
but we do want to point out that the external name is filename, and the internal name is the
more meaningful strName. Also, if you are reusing code with the strName variable, as we did
here, you don’t have to modify anything.

After the code is complete and the component is registered, it’s time to use the component in
a script. The script in Listing 4-5 on the next page is a short demonstration of how the File-
Plus.wsc component is used.

Note You must register a script component before you can use it. Do this by right-clicking
the component in Windows Explorer, and clicking Register. Some scripting editors also offer a
shortcut menu command. You can also register a component by running Regsvr32 mycompo-
nent.wsc. You’ll need to use the full path to the file. Registering the component makes it avail-
able through the registry. If you add or remove any properties, method, or events, you must
un-register the component and re-register it for the changes to take effect. There is an Unreg-
ister switch you can use with Regsvr32. The syntax is regsvr32 /u mycomponent.wsc. By the way,
you don’t have to un-register and re-register your component when you modify the underly-
ing VBScript, only when the component’s structure changes. Remember, the component file
must be copied and registered on any computer where you intend to use it.

122 Part II: Packaging Your Scripts

Listing 4-5 FilePlusDemo.vbs
'Use CSCRIPT

Dim objFP

Set objFP=CreateObject("fileplus.wsc")

objFP.filename=InputBox("What file do you want to look at?","FilePlus","c:\boot.ini")

strData="Properties for " & objFP.filename & vbcrlf

strData=strData & "modified: " & objFP.modified & vbcrlf

strData=strData & "size: " & objFP.size & " bytes" & VbCrLf

strData=strData & "#lines: " & objFP.linecount

WScript.Echo strData

WScript.Echo String(10,"*")

iHead=CInt(InputBox("How many lines do you want to see from head?","FilePlus",5))

'view first 5 lines of file

strHead=objFP.head(iHead)

WScript.Echo strHead

WScript.Echo String(10,"*")

iTail=CInt(InputBox("How many lines do you want to see from tail?","FilePlus",5))

'view last 5 lines of file

strTail=objFP.tail(iTail)

WScript.Echo strTail

rc=MsgBox("Do you want to view file?",vbYesNo+vbQuestion,"FilePlus")

'open file in Notepad

if rc=vbYes Then objFP.view

WScript.Quit

The component can be used like any other object. We instantiate an object by using the
CreateObject method. Use the component’s registered name for the progid.

Set objFP=CreateObject("fileplus.wsc")

This object needs to have a filename defined for all the other properties and methods to work.
In Listing 4-5, we set the object’s filename property to a prompted value by using the InputBox
function.

objFP.filename=InputBox("What file do you want to look at?","FilePlus","c:\boot.ini")

The internalname variable, strFile, has this same value and will be used in the functions when
necessary. With this variable defined, we can get the size, modified, and linecount properties
and display the results.

Chapter 4: Windows Script Components 123

strData="Properties for " & objFP.filename & vbcrlf

strData=strData & "modified: " & objFP.modified & vbcrlf

strData=strData & "size: " & objFP.size & " bytes" & VbCrLf

strData=strData & "#lines: " & objFP.linecount

WScript.Echo strData

When the object’s property is invoked, a function is called to return a value. For example, to
get the modified property, this function is called.

function get_readmodified()

On Error Resume Next

If objFSO.FileExists(strFile) Then

 Set objFile=objFSO.GetFile(strFile)

 get_readmodified = objFile.DateLastModified

Else

 get_readmodified=0

End If

end function

Here is another instance in which we use different names for the internal and external
property. The function name, get_readmodified, reflects that we are reading a property value,
although in actuality we are calculating the value with VBScript and the file system object.
This function is essentially a wrapper for the file system object, and it returns the file’s datelast-
modified property.

To use the object’s head and tail methods, we need a value for the number of lines to read. The
sample script prompts the user.

iHead=CInt(InputBox("How many lines do you want to see" & _

" from head?","FilePlus",5))

Because the head method returns data, we’ll set it to a variable and display the results.

strHead=objFP.head(iHead)

WScript.Echo strHead

The same process holds true for the tail method.

iTail=CInt(InputBox("How many lines do you want to see" & _

" from tail?","FilePlus",5))

strTail=objFP.tail(iTail)

WScript.Echo strTail

The last method, view, opens the file in Notepad if the user running the script so chooses.

rc=MsgBox("Do you want to view file?",vbYesNo+vbQuestion,"FilePlus")

'open file in Notepad

if rc=vbYes Then objFP.view

124 Part II: Packaging Your Scripts

We could have defined the method to get the specified number of lines, or to view the entire
file and display the results in a popup window, Notepad, or Internet Explorer. That’s the
benefit of this technique—you can hide complex code in a Windows Script Component. The
scripts that use the component only have to deal with simple properties and methods.

Summary
In this chapter, we showed you how to create your own COM objects by creating a Windows
Script Component. Using a WSC file, you can take existing code that accomplishes a specific
task and package it as part of a component. This component is utilized in your administrative
scripts and simplifies script development. We demonstrated how to use the Windows Script
Component Wizard as well as outlined the benefits of using a script editor to develop script
components. Finally, we showed you how a WSC operates and how to use it in a script. Win-
dows Script Components take time to develop and deploy, but the power, flexibility, and ease
they provide make them well worth the effort.

125

Chapter 5

HTML Applications: Scripts with
a User Interface

In this chapter:

Understanding HTML Applications. 125

Understanding the Internet Explorer Document Object Model 129

Preparing Your HTA . 133

Understanding HTA Requirements and Essentials . 140

Working with Forms and Fields . 147

Adding Subroutines and Functions. 151

Viewing HTAs in Action . 152

Summary . 157

HTML applications (HTAs) combine the flexibility of a Web page with the functional power of
VBScript. With HTAs, you can build scripts that look and feel in many respects like Windows
applications, but without needing to learn a complex language like VB.NET or use a complex
development tool like Microsoft Visual Studio. We’ll show you a step-by-step conversion
method to take an existing VBScript and wrap it in an HTA, turning it into a graphical script.

A regular VBScript doesn’t offer much in the way of user interface elements—the MsgBox and
InputBox functions are nearly the limit of what VBScript offers intrinsically, and that’s not a lot.
Sometimes, you might want to create a script that includes more robust user interface ele-
ments, perhaps offering users a way of entering data into a Windows-style dialog box. You
might want to produce formatted output, such as a status report. Many third-party products
can give you this kind of flexibility, but Windows offers a built-in option: HTML applications
(HTA).

Understanding HTML Applications
An HTA is a type of HTML page that combines standard HTML elements and formatting with
VBScript. HTAs are executed by Mshta.exe, an executable file that’s a core part of the
Microsoft Windows operating system. Mshta.exe instantiates Microsoft Internet Explorer’s

126 Part II: Packaging Your Scripts

HTML rendering engine (even if Internet Explorer is not the user’s default Web browser) and
allows Internet Explorer to display the page and execute its scripts. This arrangement has
some distinct differences from both Web pages and regular Windows scripting.

■ The usual Internet Explorer security model doesn’t apply to HTAs. HTAs can instantiate
ActiveX controls and other Component Object Model (COM) objects, such as the File-
SystemObject object, without displaying warning messages to the user. Typically, Internet
Explorer will only execute HTAs that are located on the hard drive of the user’s com-
puter. Internet Explorer displays warnings when downloading an HTA from the Inter-
net because HTAs can bypass most of the security features built into Internet Explorer.
This security bypass allows an HTA to behave more like a Windows application—which
typically has few restrictions on what it can do—than a Web page.

■ You have much more control over the appearance of the window. Unlike a standard
Web page, where Internet Explorer usually displays several toolbars, an address bar, a
menu, and so forth, you decide which elements an HTA displays. To make the HTA look
more like a Windows application than a Web page, you’d hide all the Internet Explorer
user interface elements such as toolbars and menus. (These elements are collectively
referred to as chrome by developers.) You can also specify the text that appears in the
window’s title bar, whether it has standard minimized and maximize buttons, and even
whether the application icon is displayed in the title bar and the Windows taskbar.

■ Because the script is executed by Mshta.exe rather than wscript.exe or cscript.exe, you
won’t have intrinsic access to the WScript objects, as you would in a ordinary VBScript.
In other words, you won’t be able to use methods like WScript.Echo. However, in an
HTA, most of the intrinsic WScript properties and methods are replaced by something
more suitable for a graphical application. You can, for example, use VBScript’s built-in
MsgBox statement to display simple pop-up dialog boxes within your HTA.

Note By default, the HTA filename extension is associated with Mshta.exe, which allows
Windows to automatically execute HTAs when you double-click them. Some corporate envi-
ronments, however, might modify or remove this filename extension association, so HTAs
won’t execute when you double-click them. If that’s the case, you can manually execute
Mshta.exe, passing it the name of the HTA as a command-line argument.

You might have already run an HTA without realizing it because they can look almost exactly
like a “real” Windows application. For example, the Microsoft Scripting Guys’ Scriptomatic
tool, shown in Figure 5-1, is an HTA, yet it has the look and feel of a traditional Windows
application.

Chapter 5: HTML Applications: Scripts with a User Interface 127

Figure 5-1 The Scriptomatic is an HTA written in VBScript.

If you haven’t run an HTA before, download the Scriptomatic and try it out. You’ll get a better
feel for how an HTA works and what it can look like. Then open the HTA in a script editor (or
Microsoft Notepad, if you don’t have a script editor) and see how VBScript and HTML work
together to make the HTA function. You can download the Scriptomatic at

http://www.microsoft.com/technet/scriptcenter/tools/scripto2.mspx

On the CD This link, like most of the links referenced in this book, is included in the Links
folder on the companion CD. Click Scriptomatic 2.0.

The following are some specific points to notice about the Scriptomatic.

■ The window’s title bar is customized. Notice that the window’s icon isn’t the standard
Internet Explorer icon, but rather the default icon used by Mshta.exe. The authors could
have specified a custom icon, but that icon graphic would have to have been distributed
along with the HTA itself.

■ The HTA can be distributed simply by copying the HTA file. Try copying it to another
computer and running it, and it should work fine. As a Web site download, the Scrip-
tomatic is packaged in an installer, but that’s mainly because some corporate firewalls
block the downloading of HTA files for security reasons. (Remember, HTAs bypass the
Internet Explorer security model.) Because you’ll usually be creating and using HTAs
entirely on your intranet (or even just on your own computer), you won’t need to create
an installer.

128 Part II: Packaging Your Scripts

■ The HTA uses standard Windows user interface elements such as drop-down list boxes,
radio buttons, and so forth. These elements can be dynamically changed at run time.
Notice how the WMI Class drop-down list populates itself after you select an item from
the WMI Namespace drop-down list.

■ The HTA is built with HTML. For example, the entire page layout is contained within an
HTML table, which is how the dividing lines between the various sections were created
(they’re just table borders).

If looking at the Scriptomatic HTA in a script editor is confusing, don’t worry! This HTA was
written by gurus who practically do it for a living. We’ll be working with much simpler tech-
niques to generate HTAs, and we’ll walk you through it step-by-step. Before we get started with
the essentials of creating a new HTA, however, we need to spend a little time reviewing some
background material.

Our earlier statement that HTAs bypass most of the security restrictions in Internet Explorer
might seem alarming, but you shouldn’t worry. First, strictly speaking, HTAs don’t run in
Internet Explorer. Internet Explorer is actually composed of several distinct parts. One part
provides the visual user interface: the window’s title bar, the toolbars, the spinning e icon, and
so forth. Another part is the HTML rendering engine, which interprets text-based HTML
instructions and creates the final, fully laid-out page. That engine is instantiated within the
Internet Explorer application, making the two work as a single unit. Other applications also
instantiate the rendering engine—you’ve no doubt run across a few Microsoft Management
Console (MMC) snap-ins that display HTML. They use the Internet Explorer HTML render-
ing engine. HTAs are executed by Mshta.exe, which also instantiates the Internet Explorer
HTML rendering engine. It might seem like whether or not Internet Explorer runs HTAs is a
tiny detail, but it’s an important one.

From a security standpoint, HTAs will usually only execute without warning if they’re
launched from the local computer or from a Web site that’s in the Internet Explorer trusted
security zone. HTAs downloaded from other Web sites are treated as executables, so Internet
Explorer will display the appropriate warning dialog boxes, and typically prompt the user
to save, rather than to directly execute, the HTA. Many commercial firewalls that include
software-filtering capabilities will filter HTAs right along with executables, which is per-
fectly reasonable because the two application types can have similar capabilities and risks. In
short, you should probably think of HTAs as equal to regular executables in terms of both
functionality and security risks. Windows treats them as such, so you’re as protected from
rogue HTAs as you are from rogue executables.

Chapter 5: HTML Applications: Scripts with a User Interface 129

Understanding the Internet Explorer Document
Object Model

When you’re working with an HTA, you can write VBScript that interacts with and modifies
the HTML content of the application. You can see this interaction in the Scriptomatic. As you
click buttons or make selections, the HTA responds by changing its content. List boxes are
populated with new choices, text boxes fill with script code, and so forth—all in response to
your interaction with the HTA’s interactive elements. All the visual elements within an HTA
are defined by HTML code, or tags. Let’s look at the Scriptomatic (version 2) again for a dem-
onstration. (If you haven’t already downloaded this handy tool, do so now.)

Notice that the user interface includes buttons labeled Run, CIMv2, and so forth. Examining
the HTML code—use Notepad if you don’t have an HTML or script editor—you’ll find the fol-
lowing code.

 <tr>

 <td VALIGN=TOP WIDTH=700 COLSPAN=2>

 <table BORDER=0>

 <tr>

 <td><input id=runbutton class="button" type="button" value="Run"

name="run_button" onClick="RunScript()"></td>

 <td><input id=cimv2button class="button" type="button" value="CIMv2"

name="cimv2_button" onClick="SetNamespaceToCIMV2()"></td>

 <td><input id=wmisourcebutton class="wmibutton" type="button" value="WMI Source"

name="wmisource_button" onClick="SetWMIRepository()" title="Change computer used for WMI

namespace and class information"></td>

 <td><input id=openbutton class="button" type="button" value="Open"

name="open_button" onClick="OpenScript()"></td>

 <td><input id=savebutton class="button" type="button" value="Save"

name="save_button" onClick="SaveScript()"></td>

 <td><input id=quitbutton class="button" type="button" value="Quit"

name="quit_button" onClick="QuitScript()"></td>

 </tr>

 </table>

 </td>

 </tr>

Note These long lines of code will look a lot better in an editor like Notepad, Microsoft
FrontPage, or SAPIEN PrimalScript, where they won’t wrap to multiple lines. However, HTML
doesn’t differentiate between wrapped and unwrapped lines, so even if you typed this exactly
as it’s shown in this book, it would still work.

Take a look at the six <input> tags. Each tag defines a button. The button labels are contained
in the value attribute of each tag. Each button also has an id and a name attribute, which allow
the buttons to be uniquely identified.

130 Part II: Packaging Your Scripts

Understanding the HTML Document Hierarchy

In the sample code just shown, the buttons’ tags are nested within several other tags. (This is
much easier to see in an HTML editor.) Each <input> tag is contained within a <td> tag, which
defines a table cell. The <td> tags are nested within a <tr> tag, which defines a table row. The
<tr>tag is nested within a <table> tag that, as you might guess, defines a table. All the tags that
comprise the page are contained within a <body> tag that itself is contained within a top-level
<html> tag. All this nesting forms a hierarchy of tags. An editing environment like SAPIEN
PrimalScript 4 (http://www.primalscript.com) displays this hierarchy in a tree view, as shown
in Figure 5-2.

Figure 5-2 The hierarchy of the HTML tags

This hierarchy forms the Internet Explorer Document Object Model (DOM). The DOM pro-
vides a way to programmatically work with complex, hierarchical documents in HTML format
by defining relationships between the tags. In our example, you can say that each of the <td>
tags are parents of the <input> tags; conversely, the <input> tags are children of the <td> tags.
The <td> tags, in turn, are children of the <tr> tag, and are siblings of the other <td> tags
(meaning they have the same parent tag). If you think of tags as programming objects—like
the Component Object Model (COM) objects you’ve worked with before—the following
would be true.

■ Each tag has a parentElement property, which refers to that tag’s parent tag.

■ Each tag has a children collection, which refers to any child tags.

■ Each tag has an innerHTML property, which refers to any HTML text contained within
the tag. For example, the <tr> tag would have an innerHTML property that includes
everything between <tr> tags.

Chapter 5: HTML Applications: Scripts with a User Interface 131

HTML tags are treated as programmable objects that have these, and other, properties and
collections. The various attributes of an HTML tag—such as the value attribute of the <input>
tags—are also exposed as properties. That means that you can, for example, change the label of
the Run button simply by writing script that modifies the button’s value property.

To make changes to HTML tags by using a script, you need to first find a way to refer to spe-
cific tags within your script. The DOM hierarchy provides one way. We’ve already pointed out
that tags have a children collection that contains references to all of the tag’s child tags. We’ve
also told you that the document has a single top-level tag representing the document itself,
and a <body> tag that contains all the visual HTML elements. You could conceivably refer to
the Run button in the Scriptomatic like this.

Document.Body.Childen(0).Children(1).Children(0).Children(0).Children(0).

Children(0).Children(0).Value = "Execute"

This line starts with the Document object, the top level of the DOM. The Document object
includes a Body property that refers to the <body> HTML tag. Next is the first child of the
<body> tag. (DOM collections are zero-based, meaning the first child has an index of zero, the
second an index of one, and so forth.) Next is the second child, that tag’s first child, and so on.
We end the line with the <input> tag, and we set its value property to have a fancier-sounding
label for the button.

This is, of course, ridiculous. If you actually had to script this way, you’d rip your hair out
within five minutes. The DOM provides a much simpler way—the id attribute. The Scrip-
tomatic’s HTML code doesn’t define an id attribute for every tag; instead, it defines an id
attribute only for those tags that we’re likely to use. In the case of the Run button, the tag has
an id attribute of runbutton. We can avoid that earlier nonsense and just change the button’s
label.

Runbutton.value = "Execute"

The id attribute is your key to quickly and easily accessing HTML elements throughout the
document, without having to navigate through a complicated hierarchy of tags. However, it’s
important to understand that this hierarchy exists, because you’ll have to use it from time to
time.

Understanding HTML Events

In addition to properties and collections, HTML tag objects also have events. Events occur
whenever something happens to a tag. For example, button tags—as defined by input
type="button"—can be clicked by a user, and can therefore have an onClick event. Carefully
examine the HTML for the Run button.

<input id=runbutton class="button" type="button" value="Run" name="run_button"

onClick="RunScript()">

132 Part II: Packaging Your Scripts

This tag defines a button and tells the HTA to execute the RunScript subroutine when the
onClick event occurs. You’ll find the RunScript subroutine elsewhere in the HTA—at line 885, in
fact. The HTML tag also defined an event handler, meaning it identified a subroutine that will
respond to the onClick event.

You can also define an event handler by creating a specially named subroutine. For example,
the authors of the Scriptomatic could have created the Run button’s HTML tag as follows.

<input id=runbutton class="button" type="button" value="Run" name="run_button">

There’s no event handler included in this example. We’ve specified a subroutine that’s named
after the default event handler. Instead of having a subroutine named RunScript, as the HTA
does now, it could have a subroutine named runbutton_onClick. The first few lines of the sub-
routine would look like this.

Sub runbutton_onClick

 Const ForReading = 1

 Const ForWriting = 2

 Const PERMISSION_DENIED = &h46

...

This event handler’s name comes from the button’s id attribute, runbutton, and the name of
the event, onClick. It’s up to you which of the two types—the default event handler or the spe-
cially named one—you use. You might prefer the technique used in the Scriptomatic because it
lets you use more sensible names, such as RunScript, for your subroutines. Or you might think
that runbutton_onClick is more intuitive and easier to remember. The choice is yours.

Putting the DOM to Work

At this point, you’ve learned how to refer to HTML tags within your HTA (by using the id
attribute), and how to respond to interactive events like button clicks (by defining and writing
event handlers). Essentially, building an HTA requires these steps.

1. Create the graphical user interface in HTML.

2. Assign an id attribute to any tags you’ll need to access from your script.

3. Define event handlers to react to users’ actions, such as clicking buttons.

4. Write the event handlers to do whatever your script needs to do.

We’ll spend the rest of this chapter looking into these four steps in greater detail.

Chapter 5: HTML Applications: Scripts with a User Interface 133

Preparing Your HTA
A lot of administrators become frustrated with HTAs because they’re so complex to debug.
With so much interaction between VBScript and HTML, it can sometimes be difficult to figure
out where bugs are. That’s why we strongly encourage you to write the majority of your func-
tional code as a regular VBScript file before you start using HTAs. Doing this will let you debug
the most complex portion of an HTA more easily, by focusing entirely on the VBScript. In this
section, we’ll walk you through an example.

Using a Script Rather than an HTA

We’ll start with a simple script that reads computer names from a file (one computer name per
line), connects to each computer by using Windows Management Instrumentation (WMI),
and then displays the computer’s name, operating system build number (such as 2600 for
Microsoft Windows XP), and the version number of the latest installed service pack. The
script is shown in Listing 5-1.

Listing 5-1 Service Pack Inventory
Dim objFSO, objTS, strComputer, objWMIService, colItems, objItem

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTS = objFSO.OpenTextFile("c:\computers.txt")

Do Until objTS.AtEndOfStream

 strComputer = objTS.ReadLine

 Set objWMIService = GetObject("winmgmts:\\" & strComputer & _

 "\root\cimv2")

 Set colItems = objWMIService.ExecQuery("SELECT * " & _

 "FROM Win32_OperatingSystem")

 For Each objItem In colItems

 WScript.Echo strComputer & ": " & _

 objItem.BuildNumber & ", " & _

 objItem.ServicePackMajorVersion & "." & _

 objItem.ServicePackMinorVersion

 Next

Loop

objTS.Close

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

This script performs a fairly common and useful function. We’d like the HTA to have the fol-
lowing features.

■ It should provide a text box where computer names can be entered. It should also pro-
vide a button that reads an existing file of computer names and adds those names to the
current list in the text box.

■ It should provide options to read several properties of each computer.

134 Part II: Packaging Your Scripts

■ It should display the information in a new Internet Explorer window, formatted in an
HTML table so that we can save the file (in HTML format, by using the Save As com-
mand), or copy and paste the data into a Microsoft Excel workbook.

■ It should continue with the next computer in the list instead of crashing when one of
the listed computers can’t be contacted.

Specifying the goals ahead of time will help clarify the HTA’s design and spot potential trouble
points. We already have two potential trouble spots in our list. We specified two functional
changes to be incorporated into the script prior to starting our HTA work. Two of our goals are
directly related to the graphical HTA environment: providing a text box for computer names
and providing options (perhaps check boxes) for different properties to query. The other two
goals are not directly related to HTAs, so they can be incorporated into our script right away.
Incorporating the changes in the script now, before adding it to the HTA, will make the final
HTA easier to debug.

Tip Regular scripts are easier to debug than HTAs largely because HTAs add a lot of distrac-
tion in the way of HTML tags. By getting your script working before pasting it into an HTA,
you’ll be starting with functionality that you know works. Then you can focus on the HTML to
get it looking right. In addition, using script debuggers can save a lot of time, so you should
use them if you can. Many (such as the Microsoft Script Debugger or SAPIEN PrimalScope)
work better with plain VBScript than they do with HTAs.

Listing 5-2 is the revised script. We’ve added some comments to help you follow what’s
going on.

Listing 5-2 Revised Service Pack Inventory
Dim objFSO, objTS, strComputer, objWMIService, colItems, objItem, strHTML

'open the text file

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTS = objFSO.OpenTextFile("c:\computers.txt")

'create the starting HTML

strHTML = "<table border=1>" & VbCrLf

strHTML = strHTML & "<tr>" & VbCrLf

strHTML = strHTML & "<td>Computer</td>" & VbCrLf

strHTML = strHTML & "<td>Build</td>" & VbCrLf

strHTML = strHTML & "<td>Service Pack</td>" & VbCrLf

strHTML = strHTML & "</tr>" & VbCrLf

'read through the text file

Do Until objTS.AtEndOfStream

 'add a table row to the HTML

 strHTML = strHTML & "<tr>" & VbCrLf

Chapter 5: HTML Applications: Scripts with a User Interface 135

 'get the next computer name

 strComputer = objTS.ReadLine

 'query the computer

 On Error Resume Next

 Set objWMIService = GetObject("winmgmts:\\" & strComputer & _

 "\root\cimv2")

 If Err = 0 Then

 'no error connecting - query the info

 Set colItems = objWMIService.ExecQuery("SELECT * " & _

 "FROM Win32_OperatingSystem")

 'build the output HTML cells

 For Each objItem In colItems

 strHTML = strHTML & "<td>" & strComputer & "</td>" & VbCrLf

 strHTML = strHTML & "<td>" & objItem.BuildNumber & "</td>" & VbCrLf

 strHTML = strHTML & "<td>" & objItem.ServicePackMajorVersion & _

 "." & objItem.ServicePackMinorVersion & "</td>" & VbCrLf

 Next

 'finish the HTML row

 strHTML = strHTML & "</tr>"

 Else

 'error connecting

 strHTML = strHTML & "<tr>" & VbCrLf

 strHTML = strHTML & "<td>" & strComputer & "</td>" & VbCrLf

 strHTML = strHTML & "<td>?</td>" & VbCrLf

 strHTML = strHTML & "<td>?</td>" & VbCrLf

 strHTML = strHTML & "</tr>" & VbCrLf

 End If

 On Error GoTo 0

Loop

'close the text file

objTS.Close

'close the table

strHTML = strHTML & "</table>" & VbCrLf

'display the table

Dim objIE

Set objIE = CreateObject("InternetExplorer.Application")

objIE.Navigate "about:blank"

objIE.Document.body.innerhtml = strHTML

objIE.Visible = True

Figure 5-3 on the next page shows the final output in Internet Explorer.

136 Part II: Packaging Your Scripts

Figure 5-3 The revised script produces its output in Internet Explorer.

This script can be used entirely on its own. Because we’ll be working with it so much through-
out this chapter, we’ll briefly run through what it’s doing. The first part simply instantiates the
FileSystemObject library and opens a text file.

Dim objFSO, objTS, strComputer, objWMIService, colItems, objItem, strHTML

'open the text file

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTS = objFSO.OpenTextFile("c:\computers.txt")

Next, the script creates a variable to hold the final output. Because we want to display that out-
put in Internet Explorer, the output needs to be formatted in HTML. The script starts by defin-
ing the beginning of an HTML table, including a header row that contains labels for each of
three columns.

'create the starting HTML

strHTML = "<table border=1>" & VbCrLf

strHTML = strHTML & "<tr>" & VbCrLf

strHTML = strHTML & "<td>Computer</td>" & VbCrLf

strHTML = strHTML & "<td>Build</td>" & VbCrLf

strHTML = strHTML & "<td>Service Pack</td>" & VbCrLf

strHTML = strHTML & "</tr>" & VbCrLf

The script then begins reading through the text file, one line at a time.

'read through the text file

Do Until objTS.AtEndOfStream

For each line in the text file, we create a new row in the HTML table. This row will hold the
information for a single computer listed in the text file.

 'add a table row to the HTML

 strHTML = strHTML & "<tr>" & VbCrLf

Chapter 5: HTML Applications: Scripts with a User Interface 137

We read the next computer name from the text file into a variable.

 'get the next computer name

 strComputer = objTS.ReadLine

Now we direct WMI to connect to that computer. Notice that we’ve enabled error checking by
using On Error Resume Next. That’ll let the script continue to run even if the WMI connection
fails.

 'query the computer

 On Error Resume Next

 Set objWMIService = GetObject("winmgmts:\\" & strComputer & _

 "\root\cimv2")

After attempting the connection, we check the error status by using the built-in Err object. If
it’s zero, no error occurred and we’re connected to WMI on the remote computer. We can
then direct WMI to retrieve the WMI class we want to examine.

 If Err = 0 Then

 'no error connecting - query the info

 Set colItems = objWMIService.ExecQuery("SELECT * " & _

 "FROM Win32_OperatingSystem")

The WMI query will return a collection of instances, so we use a For Each...Next loop to enu-
merate each instance in turn. In reality, because of the class we’re querying, this collection will
only ever contain one instance.

 'build the output HTML cells

 For Each objItem In colItems

We want each computer to be listed in a row of the HTML table, so we build that HTML now,
and add it to the strHTML variable.

 strHTML = strHTML & "<td>" & strComputer & "</td>" & VbCrLf

 strHTML = strHTML & "<td>" & objItem.BuildNumber & "</td>" & VbCrLf

 strHTML = strHTML & "<td>" & objItem.ServicePackMajorVersion & _

 "." & objItem.ServicePackMinorVersion & "</td>" & VbCrLf

 Next

 'finish the HTML row

 strHTML = strHTML & "</tr>"

Here’s the code that executes if the Err object isn’t equal to zero, meaning an error occurred
connecting to WMI on the remote computer. We’re still adding an HTML table row to the
strHTML variable, but we’re populating it with question marks so that it’ll be obvious in the
final output which computers weren’t contacted.

 Else

 'error connecting

 strHTML = strHTML & "<tr>" & VbCrLf

 strHTML = strHTML & "<td>" & strComputer & "</td>" & VbCrLf

 strHTML = strHTML & "<td>?</td>" & VbCrLf

138 Part II: Packaging Your Scripts

 strHTML = strHTML & "<td>?</td>" & VbCrLf

 strHTML = strHTML & "</tr>" & VbCrLf

 End If

 On Error GoTo 0

Loop

Finally, when we’ve read through each computer, we close the text file and finish the table
HTML.

'close the text file

objTS.Close

'close the table

strHTML = strHTML & "</table>" & VbCrLf

Here’s the code that displays the table. We instantiate Internet Explorer, direct it to display a
blank page (by using the URL about:blank), and then set the inner HTML of the document’s
body to the HTML table stored in the strHTML variable.

'display the table

Dim objIE

Set objIE = CreateObject("InternetExplorer.Application")

objIE.Navigate "about:blank"

objIE.Document.body.innerhtml = strHTML

objIE.Visible = True

Try the final script for yourself. Create a text file named c:\computers.txt, and populate it with
a couple of computer names from your network. Those computers must be running Windows
2000 or later, and you will need to be an administrator on the computers to query them.

Getting the Script Ready for an HTA

HTAs are, by nature, fairly modular. Remember that the functionality provided by your script
is built into event handlers, each of which is basically a standalone subroutine. As it is, our
HTA would probably have a button labeled Execute, and the event handler for that button
would contain the entire script we’ve written thus far. However, some of the functionality in
the existing script is self-contained, and we might want to separate it into its own subroutine.
Doing so won’t make the HTA any easier to write, but it will make it easier to reuse standalone
functionality, for example, the part of the script that opens Internet Explorer and displays out-
put. Listing 5-3 is the slightly-modified script, which now makes the Internet Explorer han-
dling a standalone subroutine.

Listing 5-3 Modularized Inventory Script
Dim objFSO, objTS, strComputer, objWMIService, colItems, objItem, strHTML

'open the text file

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTS = objFSO.OpenTextFile("c:\computers.txt")

'create the starting HTML

strHTML = "<table border=1>" & VbCrLf

Chapter 5: HTML Applications: Scripts with a User Interface 139

strHTML = strHTML & "<tr>" & VbCrLf

strHTML = strHTML & "<td>Computer</td>" & VbCrLf

strHTML = strHTML & "<td>Build</td>" & VbCrLf

strHTML = strHTML & "<td>Service Pack</td>" & VbCrLf

strHTML = strHTML & "</tr>" & VbCrLf

'read through the text file

Do Until objTS.AtEndOfStream

 'add a table row to the HTML

 strHTML = strHTML & "<tr>" & VbCrLf

 'get the next computer name

 strComputer = objTS.ReadLine

 'query the computer

 On Error Resume Next

 Set objWMIService = GetObject("winmgmts:\\" & strComputer & _

 "\root\cimv2")

 If Err = 0 Then

 'no error connecting - query the info

 Set colItems = objWMIService.ExecQuery("SELECT * " & _

 "FROM Win32_OperatingSystem")

 'build the output HTML cells

 For Each objItem In colItems

 strHTML = strHTML & "<td>" & strComputer & "</td>" & VbCrLf

 strHTML = strHTML & "<td>" & objItem.BuildNumber & "</td>" & VbCrLf

 strHTML = strHTML & "<td>" & objItem.ServicePackMajorVersion & _

 "." & objItem.ServicePackMinorVersion & "</td>" & VbCrLf

 Next

 'finish the HTML row

 strHTML = strHTML & "</tr>"

 Else

 'error connecting

 strHTML = strHTML & "<tr>" & VbCrLf

 strHTML = strHTML & "<td>" & strComputer & "</td>" & VbCrLf

 strHTML = strHTML & "<td>?</td>" & VbCrLf

 strHTML = strHTML & "<td>?</td>" & VbCrLf

 strHTML = strHTML & "</tr>" & VbCrLf

 End If

 On Error GoTo 0

Loop

'close the text file

objTS.Close

'close the table

strHTML = strHTML & "</table>" & VbCrLf

'display the table

DisplayOutputInIE(strHTML)

140 Part II: Packaging Your Scripts

Sub DisplayOutputInIE(strHTML)

 Dim objIE

 Set objIE = CreateObject("InternetExplorer.Application")

 objIE.Navigate "about:blank"

 objIE.Document.body.innerhtml = strHTML

 objIE.Visible = True

End Sub

Now if we ever want another HTA that displays information in a pop-up Internet Explorer
window, we can just copy and paste the DisplayOutputInIE subroutine. It’s already debugged
and working, so we’ll have saved ourselves a considerable amount of time.

Best Practices Administrative scripting—indeed, the very word VBScript—is often looked
down upon by many software developers and even IT managers. This is because too many
administrators fail to follow basic best practices when creating their scripts, and the adminis-
trators earn reputations as rogues. One way to avoid that stigma is to follow industry best
practices for software development in your scripts, particularly for modularization. The general
rule is that if a piece of script can be used more than once, either in the same script or in a dif-
ferent one, break that piece into a function or subroutine of its own. We won’t always do that
with the scripts in this book, and when we do, we won’t always modularize as much as we
could. We’ve made that decision for this book to help keep the scripts clearer and simpler to
follow. We firmly believe that you, however, should modularize whenever possible.

Now we can begin working on the HTA itself. There are a few basics you’ll need to pick up
before you can start working on your HTA. In the next few sections, we’ll cover this back-
ground material and provide some snippets. We’ll pick up in the last section, Viewing HTAs in
Action, by taking all of this disparate knowledge and bringing it together with our original
VBScript example to create the final, functional HTA.

Understanding HTA Requirements and Essentials
In the next few sections, we’ll discuss some of the basic rules for building an HTA and intro-
duce some of the design decisions you’ll need to make before you start working in an editor.

Tip A lot of the things we show you in the next several sections can be tough to remember,
especially HTML tag formatting. There are tools to help make these easier, though. The freely
available HTA Helpomatic is a Microsoft tool that produces samples of various HTML and HTA-
related formatting for you. (Download at http://www.microsoft.com/technet/scriptcenter/hubs/
htas.mspx. This link is included on the CD; click HTA Helpomatic.) If you use a commercial tool
as your development environment, contact Scripting Outpost (http://www.scriptingout-
post.com) about their HTA Snippets Pack. These snippets integrate into the PrimalScript
environment and allow you to drag HTML and HTA elements into your script.

Chapter 5: HTML Applications: Scripts with a User Interface 141

Using HTA Tags

Only two things really differentiate an HTA from a Web page. First, HTAs use the filename
extension .hta. It’s this filename extension that tells Windows to execute the file in Mshta.exe
rather than directly in Internet Explorer. Second, HTAs contain a special tag, called the HTA
tag, that tells Mshta.exe a number of details about how the HTA should look, how it should
execute, and so forth.

The HTA tag must appear within the head tags of an HTML page. The head section of an
HTML page doesn’t contain regular HTML tags intended for viewing; instead, it contains a
number of other types of tags—including the tags in which your VBScript code will be stored—
that provide background information and supporting functionality for the application. The
complete HTA tag looks like this.

<hta:application

applicationname="MyHTA"

border="dialog"

borderstyle="normal"

caption="My HTML Application"

contextmenu="false"

icon="myicon.ico"

maximizebutton="false"

minimizebutton="true"

navigable="false"

scroll="false"

selection="false"

showintaskbar="true"

singleinstance="true"

sysmenu="true"

version="1.0"

windowstate="normal"

/>

Almost everything there is optional. At a minimum, your HTA tag needs to contain the follow-
ing information.

<hta:application />

By using the many optional attributes, you can significantly customize how your HTA looks
and behaves. The complete set of attributes are as follows.

■ The applicationname attribute assigns a name to your application.

■ The border attribute determines the type of border that the HTA window will have.
The default is a thick border, which includes resizable edges and a size grip graphical
element in the lower-right corner. You can also specify the following:

❑ Thin. A resizable border lacking the size grip element

❑ None. No border

❑ Dialog. A fixed (non-resizable) border

142 Part II: Packaging Your Scripts

■ The borderstyle attribute controls the appearance of the window border. It defaults to
normal, but you can also specify the following:

❑ Complex. A raised and sunken border

❑ Raised. A raised 3-D border

❑ Static. A 3-D border usually used for windows that don’t accept user input

❑ Sunken. A sunken 3-D border

■ The caption attribute specifies the text that appears in your HTA window’s title bar.

■ The contextmenu attribute, set to TRUE or FALSE, indicates whether right-clicking the
HTA will display the Internet Explorer context menu. Because traditional Windows
applications don’t do this, setting ContextMenu="false" will better mimic the behavior of
a Windows application.

Tip HTA attributes can generally accept true or yes for true, and false or no for false.
The HTA documentation in MSDN Library prefers yes and no.

■ The icon attribute sets the name of a .ico file that will be the application’s window and
taskbar icon. If you omit this, the standard Mshta.exe icon will be used. A downside to
this attribute is that there’s no way to bundle the icon file with the HTA file. You’re better
off specifying an icon file that is accessible through UNC (perhaps on a file server) or
URL (perhaps on an intranet Web server), than an icon on the local hard disk.

■ The innerborder attribute displays a 3-D inner border around the HTA. Setting it to No
suppresses the inner border. The default is Yes.

■ The maximizebutton attribute, when set to TRUE displays a button that maximizes the
HTA window. We prefer setting this to FALSE because the layout of the HTA doesn’t
usually look as good in a full screen as it does at whatever size it was created.

■ The minimizebutton attribute, when set to TRUE, displays a button that will minimize
the HTA to the taskbar. Setting this to FALSE hides the button.

■ The navigable attribute, when set to TRUE, specifies that any hyperlinks in your HTA
will be opened in the HTA, navigating away from your HTA content. We recommend set-
ting this to FALSE so that any hyperlinks will open in a new Internet Explorer window,
leaving your HTA open.

■ The scroll attribute, when set to TRUE, shows scrollbars in your HTA’s main area. Setting
it to FALSE hides the scrollbars.

■ The scrollflat attribute, when set to TRUE, displays flat or 3-D scroll bars. Setting it to
FALSE hides the scrollbars.

Chapter 5: HTML Applications: Scripts with a User Interface 143

■ The selection attribute, when set to TRUE, allows selection of text within the HTA. We
recommend setting it to FALSE to mimic the behavior of a traditional Windows applica-
tion. Setting this to FALSE will not prevent text in text boxes and other input controls
from being selected, just the static text that you create within the HTA.

■ The showintaskbar attribute, when set to TRUE, allows the HTA to be displayed in
the Windows taskbar. Setting this to FALSE prohibits the HTA from being displayed
in the taskbar.

■ The singleinstance attribute, when set to TRUE, allows only one copy of the HTA to run
at a time. If set to FALSE, multiple copies can run. When set to TRUE, if a user double-
clicks the HTA file while the HTA is already running, the currently running instance will
come to the foreground rather than launching a new copy of the HTA.

■ The sysmenu attribute, when set to TRUE, shows the system menu, usually in the upper-
left of the window’s title bar. If you set this to FALSE, the minimize, maximize, and
restore buttons will also be hidden.

■ The version attribute sets the version number of the HTA. This can be whatever value
you like.

■ The windowstate attribute specifies the initial window state for the HTA. The default, nor-
mal, uses the default specified by Internet Explorer. You can also specify the following:

❑ Minimize. The window is displayed only in the taskbar. If, however, the showIn-
TaskBar attribute is FALSE, the window will not be displayed and the user will be
unable to access it.

❑ Maximize. The window will be maximized, covering the full screen.

Note Technically, the application attribute can have a value, too. Specifying hta:application is
the same as hta:application="no", which applies the default HTA security model. This model
prevents untrusted content within a frame from accessing the HTA or being accessed by it.
Specify hta:application="yes" to force all frame content to be trusted. This is a pretty rare
requirement, usually something you’d do only if your HTA were implementing a frame that
included content from another intranet Web server. Because it’s so rare, we won’t cover that
situation in this book.

The HTA tag allows you to exercise considerable control over the initial appearance and
behavior of your HTA.

Sizing an HTA

One thing you can’t do with the HTA tag is specify the initial size of the HTA window. The only
way to force the HTA window to a specific size is to do so at run time. The onLoad event of the
window object always runs when an HTA loads, even before the user can begin interacting

144 Part II: Packaging Your Scripts

with the HTA. The window object represents the window in which the HTA runs, and you can
control its height, width, left, and top properties to size and position it on the screen.

Sub window_onLoad()

 window.moveTo(10,10)

 window.resizeTo(640,480)

End Sub

This will force the window to position itself to 10 pixels from the left edge of the screen and 10
pixels from the top edge of the screen, and to size itself to 640 pixels wide by 480 pixels high.
This event handler runs automatically; you don’t need to do anything special other than
include it in your HTA.

Tip The window_onLoad event is also a good place to put any script code that sets up your
HTA. For example, you could dynamically populate list boxes, set defaults for options, and so
forth.

Using <div> and Tags

In an earlier example, we showed you the code used to change a button’s text label. That’s not
something you’ll probably do a lot in your scripts. However, what you probably will do a lot is
display dynamic messages. For instance, in our example, we might want to display a message
like Now inventorying computers while the inventory portion of the script runs. Then we might
want to change that message to Inventory complete when the inventory is finished. Displaying
that type of dynamic message in an HTA is easy, provided you leave room for it in your initial
layout or design.

Division, or <div>, tags, let you make that room for dynamic messages. A <div> tag simply
defines a region of the HTML document. Because you can give the <div> tag an id attribute,
you can refer to it from your script code. The <div> tag has an innerHTML property, so you can
control what appears between the opening and closing <div> tags. Internet Explorer also sup-
ports a similar tag, called . For the purposes of writing HTAs, there is not a lot of differ-
ence between the two. What differences there are date back to the days when Microsoft and
Netscape were exploring ways of extending HTML’s usefulness. One company came up with
<div> tags; the other came up with tags. Use whichever one you prefer. There are some
slight differences in how the two are displayed: a <div> tag creates line breaks, for example. For
the purposes of writing an HTA, however, you probably won’t notice the differences much. In
the Scriptomatic code, you’ll notice two tags near line 1403.

Chapter 5: HTML Applications: Scripts with a User Interface 145

Notice that these have no inner text or HTML to start with, so when the HTA first loads,
they’ll be completely invisible. They do, however, have id attributes, allowing them to be mod-
ified by the script code. The first reference to the wmi_classes span is on line 194.

wmi_classes.innerHTML = "<div style=""font-size:8pt;color:red;"">Please wait, trying to load

WMI Classes in namespace " & namespacespulldown.value & " ...</div>"

This is modifying the span’s innerHTML property, which starts out empty. The script inserts a
<div> tag (which contains formatting to display red text) and a message.

Note You’ll find that many HTA developers use tags as placeholders for dynamic
text, like this Please wait message, and use <div> tags to apply formatting. That’s a perfectly
acceptable practice, and if it’s one you find convenient and understandable, we encourage you
to use it.

Creating areas for dynamic messages is that easy. Simply define the location of the message by
using a or <div> tag that has an ID, and then display the message by modifying the
innerHTML property of the tag.

Using Inline Frames

If you haven’t worked with HTML a lot, inline frames—or IFrames, as the Web folks like to call
them—can seem unintuitive. Essentially, an IFrame defines a rectangular region that displays
the content of a Web page. Figure 5-4 shows an inline frame in action, and Listing 5-4 is the
HTML that makes it happen.

Figure 5-4 A page with an inline frame

146 Part II: Packaging Your Scripts

Listing 5-4 Inline Frame
<p>This is the main page.</p>

<p><iframe name="I1" src="http://www.scriptinganswers.com">

Your browser does not support inline frames or is currently configured not to display

inline frames.

</iframe></p>

<p>This is the main page.</p>

The <iframe> tag is doing the work of creating the inline frame. Like other tags, it can have an
id attribute (although it does not have one in this simple example), and a src attribute that tells
the IFrame what to display within the inline frame area. Additional attributes can be specified
to control the IFrame’s size, whether it has scroll bars, whether it has a border around it, and
so forth.

You can think of an IFrame as a miniature Internet Explorer browser entirely contained within
a rectangular area that you define. As we explained earlier, your HTA won’t generally have
access to the contents of the IFrame, but you can control the <iframe> tag itself, which means
you can control what the IFrame displays. For example, you can place the following inside an
HTA.

<p>This is the main page.</p>

<p><iframe id="myiframe" name="I1" src="http://www.scriptinganswers.com">

Your browser does not support inline frames or is currently configured not to display inline

frames.

</iframe></p>

<p>This is the main page.</p>

Elsewhere, you might have script that reads as follows.

myiframe.src = "http://www.microsoft.com"

This would cause the IFrame to display the Microsoft.com home page. Your script would not,
however, be able to access the Internet Explorer DOM of the Microsoft home page unless you
used the <hta:application="true"> tag we described earlier, which disables cross-frame security
precautions.

Important Disabling cross-frame security means that your code can access the contents of
the IFrame, and also that the IFrame—and any scripts it might contain—can access the con-
tents of your HTA. If you’re going to do this, make absolutely certain that you trust whatever
content is loaded into the IFrame.

Inline frames can also be useful for displaying information. For example, in our sample HTA,
we want the output to be displayed in a pop-up window. However, we could just as easily
design an inline frame into the HTA, and display the output there instead. Inline frames are
simply another option for displaying information within your HTA.

Chapter 5: HTML Applications: Scripts with a User Interface 147

Working with Forms and Fields
One of the main reasons most administrators use HTAs is to gain more robust input capabili-
ties. After all, VBScript’s intrinsic InputBox function—the sole means of graphically collecting
user input—is a bit limiting. HTML forms and input controls (or fields) provide much more
flexibility.

Perhaps the most basic input control is the text box, and HTML includes three kinds.

■ A text box is a simple, one-line entry field.

■ A text area is a box for typing multiple lines of text.

■ A password box mimics a text box in functionality but masks whatever is typed in it.

The text box and password box are implemented by using HTML <input> tags, whereas the
text area has its own special <textarea> tag. Here’s what they look like.

<input type="text" id="txtName">

<input type="password" id="txtPassword">

<textarea id="txtStory"></textarea>

Notice that each carries an id attribute, allowing it to be referred to from within your scripts.

As a general rule, we believe that manually typing HTML tags is a bad idea. There are a num-
ber of excellent commercial What You See Is What You Get (WYSIWYG) HTML editors on the
market, and there’s no reason not to use them. Microsoft FrontPage is one you might be famil-
iar with and be able to access easily. One problem with FrontPage, however, at least from an
HTA standpoint, is that it goes a bit overboard. Here’s a snippet of HTML that FrontPage cre-
ated. It includes the three types of input controls.

<form method="POST" action="--WEBBOT-SELF--">

<!--webbot bot="SaveResults" U-File="fpweb:///_private/form_results.csv" S-Format="TEXT/CSV"

S-Label-Fields="TRUE" -->

<p><input type="text" name="T1" size="20"></p>

<p><input type="password" name="T2" size="20"></p>

<p><textarea rows="2" name="S1" cols="20"></textarea></p>

<p><input type="submit" value="Submit" name="B1"><input type="reset" value="Reset"

name="B2"></p>

</form>

You’ll need to work on this code a bit to make it more suitable for use in an HTA. There’s only
a few steps to take.

1. Remove the <form> tags.

2. Remove the <!--webbot --> tag.

3. Add a unique id attribute to each input control. For clarity, change the name attribute to
match your id attribute.

4. Delete the Submit or Reset buttons, and add regular buttons for your application.

148 Part II: Packaging Your Scripts

FrontPage or another WYSIWYG HTML editor can make creating complex, professional-
looking applications much easier, so we think it’s worth the trouble to go in and clean up the
HTML they create and make it more suitable for an HTA. Actually working with the input con-
trols—reading their values in your script, and modifying them at run time—can be a bit compli-
cated. In the next few sections, we’ll cover everything you’ll need to know.

Populating a List Box

Creating drop-down list boxes (or regular, scrolling list boxes) is easy with FrontPage (or
whatever editor you’re using). You can use the tools the editor provides to add selections to
your list boxes. However, there will be situations when you want to dynamically add items to
a list. When you select a WMI namespace, for example, the Scriptomatic HTA figures out what
classes are in that namespace, and adds them to a drop-down list box. Both types of list box
are defined by using <select> tags. Here’s a drop-down list with two options.

<select size="1" name="lstOptions">

<option>Option 1</option>

<option>Option 2</option>

</select>

Making this into a scrolling list box involves changing only one thing.

<select size="3" name="lstOptions">

<option>Option 1</option>

<option>Option 2</option>

</select>

Can you see the difference? In the second example, the list box has a size of 3, making it three
lines high. In the first option, the list box has a size of 1, which forces it to be a drop-down list
box. Options—that is, items in the list—are defined by <option> tags, which are contained
within the list box’s <select> tags. The text between the <option> tags appears in the list box.
You can specify a value that will represent that option. If you don’t specify a value, the option’s
text is used as its value. Here’s an example.

 <option value="1">Option 1</option>

 <option>Option 2</option>

To dynamically add an option to the list box, add a new <option> tag. Here’s an example.

Dim objOption

Set objOption = document.createElement("OPTION")

objOption.Text = "Option 3"

objOption.Value = "3"

lstOptions.Add(objOption)

This adds a third option to our list, with text that reads Option 3 and a value of 3.

Chapter 5: HTML Applications: Scripts with a User Interface 149

Creating Buttons

We’ve already mentioned that you don’t want to use the Submit and Reset button types. The
Submit button is designed to send a form’s contents to a Web server for processing. HTAs are
typically self-contained and don’t rely on a Web server, so the Submit button is useless. Reset
buttons are used to clear form fields, and you might find a use for that, but having mistakenly
clicked a few of these buttons, we suggest just leaving them out.

You’re going to need buttons, though; the Scriptomatic HTA has several, in fact. Fortunately,
buttons are among the easiest HTML elements to create.

<input type="button" value="OK" name="btnOK">

This is straight from FrontPage, and you’ll notice that it lacks an id attribute, which you’ll need
to add. The value attribute determines the label that appears on the face of the button, and the
type attribute indicates that this is a regular button, not a Submit or Reset button.

Connecting a Button to a Script

Generally, your HTA will only do things when someone clicks a button, so connecting buttons
to the script is very important. We’ve briefly discussed event handlers already—they’re how
you write script to react to button clicks. There are two main ways to connect an event handler.
The first way is to simply write a subroutine with the special event handler name.

Sub btnOK_onClick()

 'your code goes here

End Sub

This would need to appear between a <script language="vbscript"> tag and a </script> tag,
which would in turn be located within the head section of the HTA. This method generally
works well for most buttons. However, you might want more than one button connected to an
event handler. Perhaps, for example, you have two buttons that will do something very similar.
An easy way to do that is to create the buttons as follows.

<input type="button" value="OK" name="btnOK" id="btnOK1" onClick="DoButton">

<input type="button" value="OK" name="btnOK" id="btnOK2" onClick="DoButton">

This will connect both buttons’ onClick event to the DoButton subroutine. Write that sub-
routine as follows.

Sub DoButton()

 Select Case window.event.srcElement.id

 Case "btnOK1"

 'your code for btnOK1 goes here

 Case "btnOK2"

 'your code for btnOK2 goes here

End Sub

150 Part II: Packaging Your Scripts

The special window.event.srcElement object is a reference to whatever object—in this case, one
of the two buttons—generated the last event. By checking the object’s id property, you can
quickly determine which button was clicked, and act accordingly.

Using Check Boxes and Radio Buttons

Check boxes and radio buttons are useful ways to display options to your HTA’s users.
They’re easy to create in a WYSIWYG editor, or manually by using this HTML.

<input type="checkbox" name="chkCheckbox" value="ON" checked>My Checkbox

<input type="radio" value="Value1" checked name="optButton">My Radio

Button 1

<input type="radio" name="optButton" value="Value2">My Radio Button 2

Notice a few things here.

■ FrontPage didn’t add the id attributes to these elements, so you’ll need to do that man-
ually. As always, try to keep the id and name attributes identical for ease of use.

■ Both the check box and radio button (also called an option button) elements only create
the actual check box or radio button; the text accompanying the element is inserted
separately.

■ The checked attribute, if present in a check box, makes the default state of the check box
selected. To make the default state cleared, omit the checked attribute.

■ The two radio buttons have the same name attribute. This makes them part of the same
group, meaning that only one of them can be selected at a time. They should also have
the same id attribute to make them scriptable.

■ One of the radio buttons has a checked attribute, meaning it’s the one selected by default.

Checking the value of these elements from within your script is straightforward. For the radio
button, simply access the element’s value property. Although multiple elements with the same
id attribute will exist, the value property will correspond to the value attribute of whichever
radio button is selected by the user. In this brief example, if the user selects the second radio
button, optButton.Value would equal Value2.

Check boxes work similarly. When selected, their value property will return whatever you set
the value attribute to (ON, in this case). When not selected, the value property will contain an
empty string. You can examine the value like this.

If chkCheckbox.Value = "ON" Then

 'checked

Else

 'not checked

End If

Chapter 5: HTML Applications: Scripts with a User Interface 151

Adding Graphics

Graphics are easy to add to an HTA. Obviously, a WYSIWYG editor makes it easy to insert
images, but you can also manually build the HTML tag.

By default, a graphic must be contained within the same folder as the HTA itself. As with ref-
erencing external scripts, you’ll need to be sure you distribute the graphic along with your
HTA. To make your HTA easier to distribute, you can put the graphic on a file server or a Web
server, and let the HTA pull it from there. Because of this extra bit of complexity, we try to min-
imize our use of graphics in HTAs.

Adding Subroutines and Functions
All your script code—event handlers as well as any other subroutines and functions you write—
must appear within special tags that tell Windows what script language you’re using. The
beginning of an HTA that contains no script code (yet) would therefore look something like
this.

<html>

<head>

<script language="vbscript">

</script>

<hta:application>

</head>

<body>

After the <body> tag, you insert the HTML that creates your HTA’s visual interface. First, you
specify the language you’re using (which can be VBScript or JScript). JScript is the default lan-
guage, so if you don’t specify VBScript, you’ll run into errors.

Second, you can use multiple script sections. If you plan to include all your code within the
HTA file itself (as the Scriptomatic and many other HTAs do), there’s no need for multiple
script sections. The Scriptomatic HTA contains all its code in a single script section. However,
suppose you want to include a file full of standard subroutines that you use in several HTAs.
You might have one script section that contains event handlers for the particular HTA you’re
working on, and a second script section that includes an external file containing those stan-
dard subroutines.

<script language="vbscript">

Sub btnOK_onClick()

End Sub

Sub btnCancel_onClick()

End Sub

</script>

<script language="vbscript" src="c:\scripts\standard.vbs" />

152 Part II: Packaging Your Scripts

Best Practices Keeping commonly used subroutines in an external file is a good idea
because any changes you make to those subroutines (such as bug fixes) will only need to be
made once. If you get into the habit of copying and pasting code into multiple HTAs, any
changes will have to be made multiple times, opening the door to errors, missed HTAs, and
other potential problems.

The second script section includes an external file named C:\Scripts\Standard.vbs. One
downside to this technique is that your HTA is no longer self-contained; to run properly, it
must have access to that external file. If you’ll be distributing your HTA, you’ll either need to
distribute this extra file along with it, or keep that external file in an accessible area, such as a
file server.

Caution Including an external file does not prevent someone from seeing your script code.
To run the HTA, a user must have read permission to the HTA file and to any external scripts ref-
erenced by the HTA. Users can utilize those read permissions to directly open the external
scripts, and read them at will.

Viewing HTAs in Action
Now we’ll show you how to build an HTA from scratch. We’ll use Listing 5-3, because it’s
debugged and has most of the functionality we want. We begin by using an editor like Front-
Page to design the HTA’s visual interface. There are a few additional features we want in the
HTA, so we can design those into the interface. Figure 5-5 shows the interface in FrontPage,
and Listing 5-5 on the next page is the HTML. Note that this HTML is straight from
FrontPage; we haven’t touched it up or made it into an HTA yet.

Figure 5-5 Basic HTML layout for our HTA

Chapter 5: HTML Applications: Scripts with a User Interface 153

Listing 5-5 Basic HTML
<html>

<head>

<meta http-equiv="Content-Language" content="en-us">

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<title>Computer Inventory Tool</title>

</head>

<body>

<p align="center">Computer Inventory Tool</p>

<form method="POST" action="--WEBBOT-SELF--">

<!--webbot bot="SaveResults" U-File="C:\Documents and Settings\DonJones\My

Documents\Customer Files\MSPress\AdvancedScripting\Manuscript and CD\On The

CD\Scripts\Chap5_private\form_results.csv" S-Format="TEXT/CSV" S-Label-Fields="TRUE" --

>

<p align="left">Inventory the following computers (one per line):

<textarea rows="4" name="txtComputers" cols="40"></textarea><input type="button"

value="Load From File" name="btnLoadFromFile"></p>

<p align="left">Inventory this information:

<input type="checkbox" name="chkServicePack" value="ON">Service pack major

version

<input type="checkbox" name="chkBuild" value="ON">Windows build

<input type="checkbox" name="chkVersion" value="ON">Version

<input type="checkbox" name="chkSerialNumber" value="ON">Serial number</p>

<p align="left"><input type="button" value="OK" name="btnOK"></p>

</form>

</body>

</html>

Now we need to convert this to an HTA. In addition to changing the filename, we’ll remove the
FrontPage form tags, add a script section, add the HTA tag, and add id attributes. Listing 5-6
shows the changes.

Listing 5-6 HTA Modifications
<html>

<head>

<meta http-equiv="Content-Language" content="en-us">

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<title>Computer Inventory Tool</title>

<script language="vbscript">

</script>

<hta:application>

</head>

<body>

<p align="center">Computer Inventory Tool</p>

154 Part II: Packaging Your Scripts

<p align="left">Inventory the following computers (one per line):

<textarea id="txtComputers" rows="4" name="txtComputers" cols="40"></textarea><input

type="button" value="Load From File" id="btnLoadFromFile" name="btnLoadFromFile"></p>

<p align="left">Inventory this information:

<input type="checkbox" id="chkServicePack" name="chkServicePack" value="ON">Service pack

major

version

<input type="checkbox" id="chkBuild" name="chkBuild" value="ON">Windows build

<input type="checkbox" id="chkVersion" name="chkVersion" value="ON">Version

<input type="checkbox" id="chkSerialNumber" name="chkSerialNumber" value="ON">Serial

number</p>

<p align="left"><input id="btnOK" type="button" value="OK" name="btnOK"></p>

</body>

</html>

Best Practices Notice that we used prefixes for the various control types: chk for check
boxes, btn for buttons, and so forth. This naming convention, called Hungarian notation, is a
best practice because it helps identify the type of object you’re referring to in your script. It’s
very similar to the naming convention used for variable names, such as using str to prefix vari-
ables which will contain string data.

Now we just need to add functionality. We have only two buttons, and much of the code for
the OK button is already taken care of in Listing 5-3. We need to make the following modifi-
cations to the code.

■ Pull the contents of txtComputers into a string array rather than reading names from a
text file.

■ Add output based on the selected check boxes.

■ Add appropriate column headers based on the selected check boxes.

■ Add an event handler for btnLoadFromFile that prompts for a filename and then reads
the file into the computer names text area.

Listing 5-7 is the completed HTA.

Listing 5-7 Completed Inventory HTA
<html>

<head>

<meta http-equiv="Content-Language" content="en-us">

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">

<title>Computer Inventory Tool</title>

<script language="vbscript">

Chapter 5: HTML Applications: Scripts with a User Interface 155

Sub btnOK_onClick

 Dim arrComputers, strComputer, objWMIService, colItems, objItem, strHTML

 'get the computer names into a string

 'and split it into an array

 arrComputers = Split(txtComputers.InnerText,vbcrlf)

 'create the starting HTML

 strHTML = "<table border=1>" & VbCrLf

 strHTML = strHTML & "<tr>" & VbCrLf

 strHTML = strHTML & "<td>Computer</td>" & VbCrLf

 if chkBuild.value = "ON" Then

 strHTML = strHTML & "<td>Build</td>" & VbCrLf

 end if

 if chkServicePack.value = "ON" Then

 strHTML = strHTML & "<td>Service Pack</td>" & VbCrLf

 end if

 if chkVersion.value = "ON" Then

 strHTML = strHTML & "<td>Version</td>" & VbCrLf

 end if

 if chkSerialNumber.value = "ON" Then

 strHTML = strHTML & "<td>Serial Number</td>" & VbCrLf

 end if

 'read through the array

 For Each strComputer in arrComputers

 'add a table row to the HTML

 strHTML = strHTML & "<tr>" & VbCrLf

 'query the computer

 On Error Resume Next

 Set objWMIService = GetObject("winmgmts:\\" & strComputer & _

 "\root\cimv2")

 If Err = 0 Then

 'no error connecting - query the info

 Set colItems = objWMIService.ExecQuery("SELECT * " & _

 "FROM Win32_OperatingSystem")

 'build the output HTML cells

 For Each objItem In colItems

 strHTML = strHTML & "<td>" & strComputer & "</td>" & VbCrLf

 if chkBuild.value = "ON" Then

 strHTML = strHTML & "<td>" & objItem.BuildNumber & "</td>" & VbCrLf

 end if

 if chkServicePack.value = "ON" Then

 strHTML = strHTML & "<td>" & objItem.ServicePackMajorVersion & "</td>" & VbCrLf

 end if

 if chkVersion.value = "ON" Then

 strHTML = strHTML & "<td>" & objItem.Version & "</td>" & VbCrLf

 end if

 if chkSerialNumber.value = "ON" Then

 strHTML = strHTML & "<td>" & objItem.SerialNumber & "</td>" & VbCrLf

 end if

 Next

156 Part II: Packaging Your Scripts

 'finish the HTML row

 strHTML = strHTML & "</tr>"

 Else

 'error connecting

 strHTML = strHTML & "<tr>" & VbCrLf

 strHTML = strHTML & "<td>" & strComputer & "</td>" & VbCrLf

 strHTML = strHTML & "<td>?</td>" & VbCrLf

 strHTML = strHTML & "</tr>" & VbCrLf

 End If

 On Error GoTo 0

 Next

 'close the table

 strHTML = strHTML & "</table>" & VbCrLf

 'display the table

 DisplayOutputInIE(strHTML)

End Sub

Sub DisplayOutputInIE(strHTML)

 Dim objIE

 Set objIE = CreateObject("InternetExplorer.Application")

 objIE.Navigate "about:blank"

 objIE.Document.body.innerhtml = strHTML

 objIE.Visible = True

End Sub

Sub btnLoadFromFile_onClick()

 Dim objFSO, objTS, strFile

 Set objFSO = CreateObject("Scripting.FileSystemObject")

 strFile = InputBox("Path and filename to load?")

 If objFSO.FileExists(strFile) Then

 Set objTS = objFSO.OpenTextFile(strFile)

 txtComputers.innerText = objTS.ReadAll

 objTS.Close

 Else

 MsgBox("File does not exist.")

 End If

End Sub

</script>

<hta:application>

</head>

<body>

<p align="center">Computer Inventory Tool</p>

<p align="left">Inventory the following computers (one per line):

<textarea id="txtComputers" rows="4" name="txtComputers" cols="40"></textarea><input

type="button" value="Load From File" id="btnLoadFromFile" name="btnLoadFromFile"></p>

<p align="left">Inventory this information:

<input type="checkbox" id="chkServicePack" name="chkServicePack" value="ON">Service pack

major

version

Chapter 5: HTML Applications: Scripts with a User Interface 157

<input type="checkbox" id="chkBuild" name="chkBuild" value="ON">Windows build

<input type="checkbox" id="chkVersion" name="chkVersion" value="ON">Version

<input type="checkbox" id="chkSerialNumber" name="chkSerialNumber" value="ON">Serial

number</p>

<p align="left"><input id="btnOK" type="button" value="OK" name="btnOK"></p>

</body>

</html>

That’s all there is to it! Our work was made easier by the fact that we had a debugged script
ready to go that contained the majority of the functionality we needed. By tweaking some
minor portions of that code and merging it into a simple HTML page developed in FrontPage,
we created a complete HTA.

Summary
In this chapter, you learned that HTAs are a type of script that combines VBScript and HTML
formatting to create applications that resemble Windows applications. We showed you a
methodology that will help you quickly convert standalone VBScripts into full HTAs, and
explained ways to help troubleshoot and debug your HTAs more effectively. Remember, how-
ever, that HTAs aren’t the perfect solution for every situation. Sometimes, especially for scripts
that you’ll be using yourself, the effort of creating a fancy-looking HTA is more than it’s worth.
But for scripts that you plan to share with others, especially users who are less technically
savvy, HTAs can make scripts much friendlier usable by incorporating the familiar Windows
user interface elements.

More Info As you work with HTAs, you’ll find both the official HTA documentation as well
as the Internet Explorer dynamic HTML (DHTML) documentation to be useful. The HTA docu-
mentation is located at

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/hta/hta_node_entry.asp

(This link is on the companion CD; click HTML Applications.) The DHTML documentation is
allocated at the following Web site.

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/reference
/dhtml_reference_entry.asp

(This link is on the companion CD; click HTML and DHTML Reference.)

Because those locations change, you should also know how to get to these sites manually.
Go to http://msdn.microsoft.com/library, click Web development in the left tree, click either
HTML And DHTML in the right pane or HTML And CSS in the left pane, and then click HTML
Applications.

Part III
Advanced Scripting Techniques,
Tools, and Technologies

In this part:

Chapter 6: Remote Scripting. .161

Chapter 7: Database Scripting .179

Chapter 8: Advanced ADSI and LDAP Scripting .207

Chapter 9: Using ADO and ADSI Together .245

Chapter 10: Advanced WMI Scripting .261

Chapter 11: WMI Events .285

Chapter 12: Better Scripting with WMI Tools. .319

Chapter 13: Advanced Scripting in Windows XP and
Windows Server 2003 .353

161

Chapter 6

Remote Scripting

In this chapter:

Understanding Remote Scripting and Security. 162

Working with Windows Firewall . 170

Understanding Remote Scripting Objects . 171

Understanding Remote Scripting Methods . 172

Viewing Remote Scripting in Action. 175

Summary . 177

There are two main types of remote scripting. The first type involves running a script that con-
nects to a remote computer and then performs tasks on that remote computer. The second
type involves deploying scripts to remote computers that then run on the remote computers.
In this chapter, we’ll look at both kinds of remote scripting, including the security concerns
and difficulties you can encounter, the techniques and technologies you’ll use, and the bene-
fits you can expect to enjoy.

One of the benefits of administrative scripting is having the ability to write scripts that per-
form tasks on other computers. Windows Management Instrumentation (WMI) and Active
Directory Services Interfaces (ADSI) are perhaps two of the best remote-scripting technologies
currently available. WMI, for example, can be used to write scripts that obtain information
about remote computers, or even modify the configuration of those computers. Remote
scripting comes with certain difficulties and challenges, though, and we’ll help you under-
stand and address them in this chapter.

Before we start, let’s clarify our terminology. Unfortunately, the term remote scripting is a
bit ambiguous because it refers to two distinct techniques that involve completely different
technologies. To avoid confusing the two, we’ll invent some new terms. We’ll use the term
deployed scripts to refer to the type of remote scripting in which a script is physically copied
from your computer to a remote computer, and then executed on that remote computer. We’ll
use the term connectivity scripts to refer to scripts that are executed on your computer, but con-
nect to remote computers to perform tasks on them. These aren’t industry-standard terms
that you’re likely to run across elsewhere; we’re simply using these terms in this chapter to
help keep the two different kinds of remote scripting clear and distinct.

162 Part III: Advanced Scripting Techniques, Tools, and Technologies

Understanding Remote Scripting and Security
As Microsoft Windows becomes a more secure operating system, the difficulty of performing
administrative tasks on remote computers becomes more complex. In addition, the underlying
architecture of the Windows operating system—which includes capabilities such as multiple
user profiles on a single computer—can make remote scripting somewhat more complex. Any
kind of remote scripting typically requires you to navigate through a few security elements.

■ Connectivity

■ Identity

■ Permissions

■ Context

We’ll discuss each of these elements in this chapter. Keep in mind, though, that Windows is
an operating system, comprised of many tightly integrated subsystems. As a result, these secu-
rity elements often interact with one another. This interaction can sometimes make remote
scripting problems more difficult. For example, you might connect to a remote computer by
using domain administrator credentials that provide you with connectivity, a specific identity,
and valid permissions—in other words, a security context. However, the user profile you’d have
access to through that connection might not be what you expected. For example, if you’re try-
ing to access the profile of the computer’s primary user, your script wouldn’t work properly,
because that’s not the user profile to which the script’s security context would be connected.
Whenever you’re troubleshooting remote scripting, therefore, it’s important to think about
what the script is doing and what it’s encountering in the context of each of these security
elements.

Connectivity

The first task in any kind of remote scripting is to connect to the remote computer. Generally,
connectivity issues are caused by low-level network problems like an inability to resolve a
name to an IP address. These are problems that any experienced administrator should have
no problem troubleshooting. Other connectivity problems can be caused by local firewall soft-
ware on the remote computer, or even on your computer. We will examine firewall problems
later in this chapter.

After network and firewall issues have been resolved, the next step is connecting to the proper
services and components on the remote computer. For example, WMI requires a connection
to the remote computer’s Windows Management Instrumentation service. If that service isn’t
running, you won’t be able to make a connection, and your script won’t run properly. Other

Chapter 6: Remote Scripting 163

types of remote scripting might require Distributed Component Object Model (DCOM)
connectivity. If a connection to the correct DCOM object on the remote computer can’t be
established—perhaps because the object isn’t properly installed or registered—your script will
not function properly.

The key to solving this type of connectivity issue is to clearly understand what type of connec-
tion is required by the scripting task you’re trying to perform.

■ WMI queries typically require access to the remote computer’s WMI service. This
requires a Remote Procedure Call (RPC) connection to the service, as well as the ability
to instantiate certain DCOM objects that are installed as part of Windows.

■ ADSI queries connect to a service of some kind. In the case of ADSI’s LDAP provider, the
connection is to an LDAP server using the LDAP protocol, such as Active Directory. In
the case of a WinNT provider, ADSI connects to the service using the RPC protocol.

■ FileSystemObject queries to a remote computer’s files and folders require a file-sharing
connection that uses Server Message Blocks (SMB), just as though you were connecting
to the remote computer’s file system by using Windows Explorer.

In addition to the physical connection, some form of permissions can also be required. There
are two types of permissions involved in most forms of remote scripting. The first permission
that a script might need is connectivity permission—the permission to connect to a service or
object and ask it to perform a task. The second permission is execution permission—the permis-
sion to execute the task. There’s a subtle difference between these two.

For example, suppose you install a DCOM object on a computer named Server2, and the
object is capable of deleting user accounts from that computer’s local Security Accounts Man-
ager (SAM). You then write a script on Client1 that attempts to utilize Server2’s DCOM object.
The first permission issue you’ll run into is when your script tries to instantiate the DCOM
object. Permissions are governed by Windows’ Component Services security layer, which can
be configured through the Component Services console. As shown in Figure 6-1 on the next
page, these permissions can be left at their default settings, or they can be customized.

Customizing the launch permissions allows you to see what DCOM can control. As shown
in Figure 6-2 on the next page, DCOM can be configured with permissions that control a
local launch (an application running on the local computer that needs to use the object), or
a remote launch (an application, such as your script, running on a different computer trying to
remotely instantiate the object).

164 Part III: Advanced Scripting Techniques, Tools, and Technologies

Figure 6-1 Configuring the security for a specific DCOM object or application

Figure 6-2 Customizing launch permissions for a DCOM object

You can configure similar permissions for activation. The account you’re using to run your
script must have remote launch and activation permissions. This can be difficult on a standa-
lone computer, or one that isn’t a member of a domain, because your script might not be able
to provide the necessary credentials to obtain remote launch and activation permissions to
the object.

Chapter 6: Remote Scripting 165

You can also configure permissions to control access to the DCOM object after it has been
launched and activated. By default, only the local Administrators group can be assured of hav-
ing the necessary permissions, although obviously you can reconfigure the permissions as
needed.

These are just the permissions necessary to get started on the remote computer. After that
DCOM object is up and running, it’ll still need permissions to perform the task you want it to
do. We’ll discuss execution permissions later in this chapter.

Identity

The tasks you can perform on a remote computer are governed by your (or your script’s) iden-
tity on that remote computer. You can think of your identity in this context as the user account
that represents you on the remote computer. Your scripts will often use Windows’ ability to
pass along authentication and identity information. For example, when you use Windows
Explorer to open a shared folder on a remote computer, Windows authenticates you by using
the account you used to log on to your computer. Were you to use a script to remotely access
files on a computer, the same process would occur. The only way for the script to access the
files using alternate credentials is to use the RunAs command. When you use the RunAs com-
mand, the script is executed under a different account, and uses that account to connect to the
shared folder.

Only a few scripting technologies support the easy use of alternate credentials without RunAs.
For example, both WMI and ADSI connections can be created using alternate credentials, but
this is the exception, not the rule. Most of the time, the account used to execute the script is
the account used for all connections and tasks that the script performs.

Caution Although some scripting technologies—such as WMI and ADSI—provide a means
to pass alternate credentials, don’t make the mistake of hard-coding those credentials directly
into your scripts. Instead, prompt for those credentials when the script runs. As we discussed in
Chapter 2, “Script Security,” there’s no way to ensure that hard-coded credentials will remain
confidential, making them a significant security risk.

The reason that your identity is so important is that the remote computer will grant you per-
missions based on your identity. In other words, your identity controls what you can do on the
remote computer.

Permissions

We’ve already talked about the permission necessary to connect to various scripting-related
technologies and services. After you are connected, however, you’ll need the proper permis-
sions to perform whatever task your script is trying to perform.

166 Part III: Advanced Scripting Techniques, Tools, and Technologies

Almost every area of Windows has its own unique security layer. For example, files and folders
utilize NTFS permissions. If you’re logged into your computer using a domain account named
Jeff, and you connect to a shared folder on a remote computer in the same domain, you’ll only
be able to access the files and folders to which the Jeff account has permission. It’s the same
as using a non-scripted means, such as Windows Explorer, of accessing those files and fold-
ers. There’s no special layer of permissions for scripts; they are subject to the same rules as
everyone else.

WMI has its own layer of security, which you can administer through the WMI Control MMC
snap-in. As shown in Figure 6-3, the snap-in provides access to each WMI namespace installed
on a computer.

Figure 6-3 Managing WMI security through the WMI Control snap-in

Modifying the permissions on a namespace is done through a dialog box that’s similar to
the NTFS permissions dialog box. As shown in Figure 6-4, permissions can be applied to exe-
cute WMI methods, write full or partial WMI properties, enable accounts, remotely enable
accounts, and much more. As indicated by the gray check boxes, permissions on a namespace
can be inherited from a parent namespace or from the WMI root namespace.

Chapter 6: Remote Scripting 167

Figure 6-4 Configuring security

ADSI also deals with permissions. Connecting to an LDAP-based directory, such as Active
Directory, means you’ll be dealing with that directory’s permissions. Connecting to a standa-
lone or member computer through the WinNT provider means you’ll be dealing with local
permissions on that computer. Those permissions are often applied through the use of user
rights assignments.

As with many other potential scripting problems, the best way to understand remote scripting
security is to think about how security would work if you were performing the task manually,
without using a script. For example, if you wanted to open Active Directory and delete a user
account, what permissions would a user account need to do that? Would the account you use
to log onto your workstation have those permissions? If not, a script executed by that same
account won’t have permissions, either.

Context

Context can be one of the most confusing aspects of remote scripting. It involves identity, and
the fact that Windows is a multi-user operating system. Think about this: if Jeff and Don both
share a Microsoft Windows XP Professional computer, both of them can log on and have a
different desktop configuration, different My Documents contents, and different application
preferences saved in the registry. All these user-specific items are stored in the user profile,
which is made up of both a file system–based profile (a hierarchy of folders that resides under
the top-level Documents and Settings folder) and a registry hive (which resides under
HKEY_USERS in the registry).

Suppose that Don writes a script that copies several files to the special My Documents folder,
and modifies several registry keys under HKEY_CURRENT_USER. Don tests this script on

168 Part III: Advanced Scripting Techniques, Tools, and Technologies

his own, unshared computer, where he’s logged in to his usual domain account. The script
works fine. Then Don modifies the script slightly to perform the same tasks remotely, through
a connection to the computer that Don and Jeff share. Don’s goal is to copy several files into
Jeff’s My Documents folder, and to modify registry keys in HKEY_CURRENT_USER so that
they’ll affect Jeff’s logon session. When Don runs the script, it is completed without error, but
Jeff can’t see any changes. Figure 6-5 illustrates what happened.

Figure 6-5 Remote connectivity and context

When Don runs the script on his computer, it connects to the shared computer. The script is
authenticated by using Don’s user account, because that’s the account Don used to execute
the script. When you log on to a computer using a specific account, your profile loads, so
Don’s script modified My Documents and HKEY_CURRENT_USER—but it did it for Don’s
profile on that computer, not Jeff’s. If Don had never logged on to that computer, the com-
puter would have created a new profile, just as it does any time a user logs on for the first time.
Jeff didn’t see any of the changes made by the script because none of the changes were made
to his profile.

This example illustrates one of the most common problems administrators have: trying to
write a script that modifies the profile for the so-called “primary user” of a computer. Win-
dows doesn’t designate a “primary user”; it simply stores user accounts and profiles. User A
logs on, and has access to User A’s profile; if User B logs on, he or she has access to User B’s
profile. Simple, but frustrating when you’re trying to remotely modify a user’s profile. As
administrators, we commonly think of a computer as belonging to a single, “primary” user,
and when we want to perform administrative tasks on a computer, we typically want to do so
in a way that will affect that primary user. However, because Windows doesn’t support the

`

Jeff
`

Jeff Don

Don

Administrator

User Profiles

Chapter 6: Remote Scripting 169

designation of a single user as the primary one, we need to keep in mind that the user
account—or context—used by a script might be connected to a different profile than the one
we’d prefer.

The next question, of course, is how to write a script that remotely modifies a user’s profile. As
with most scripting problems, the easiest way to answer this question is to ask another ques-
tion: How would you copy files into another user’s My Documents folder, or modify registry
keys in another user’s HKEY_CURRENT_USER hive manually? For the files, you’d probably
open the remote computer’s administrative share (such as \\Client1\C$), navigate to the
Documents and Settings folder, and then look for the user’s name on a profile folder. From
there, you’d navigate to the My Documents folder. The complete file path would look some-
thing like \\Client1\C$\Documents and Settings\Jeff\Jeff’s Documents. That is exactly what
you’d design your script to do. Rather than trying to access the special My Documents folder,
which will also provide access to the current profile’s My Documents folder, you design your
script to navigate through the folder hierarchy to the folder you want to modify.

Modifying the registry is similar, but it’s more difficult. Each user’s HKEY_CURRENT_USER
hive is really just a shortcut to a specific registry tree under HKEY_USERS. However, rather
than listing users by name, users’ individual trees are identified by Security Identifier, or SID.
Figure 6-6 shows the Windows registry editor opened to the HKEY_USERS hive. Each user’s
personal tree is identified by SID.

Figure 6-6 Each user has a SID-identified tree under HKEY_USERS

170 Part III: Advanced Scripting Techniques, Tools, and Technologies

Modifying a user’s HKEY_CURRENT_USER hive requires your script to start in
HKEY_USERS and to know the SID of the user whose hive you want to modify. This is obvi-
ously more complex than just knowing the computer’s name, which is why you might want to
investigate alternate means of making the modification.

An alternate method might, for example, provide a way for your script to access a specified
user’s profile. The only way to do this to is if the script is running under that user’s security
context. In other words, if that user ran the script, the script would have access to that user’s
full profile, including HKEY_CURRENT_USER. Although asking users to run scripts isn’t
usually practical, one type of script that always runs under the user’s context is a logon script.
Because users generally have full permissions to their own profiles, a logon script should have
permission to make whatever changes you need to the user’s profile. A logon script is there-
fore an alternate means of executing script code under a specified user’s security context, for
the purpose of modifying that user’s profile.

Working with Windows Firewall
The Windows Firewall, introduced in Microsoft Windows XP Professional Service Pack 2 and
Microsoft Windows Server 2003 Service Pack 1, provides a high level of local security for com-
puters on which the Firewall is enabled. However, by default, the Firewall blocks most incom-
ing connections, making remote administration of any kind—including scripting—impossible.
That’s no reason to turn the Firewall off, of course; you simply need to modify it to allow the
necessary incoming connections.

■ For file and folder access, enable a Firewall exception for file sharing.

■ For WMI access, enable remote management and DCOM connections.

■ For other scripting technologies, enable incoming DCOM connections and possibly
RPC connections.

Because the configuration and management of the Windows Firewall can involve significant
planning and security issues, a more in-depth discussion of it is beyond the scope of this
book. Keep in mind that the Firewall can be configured and managed centrally, through
Active Directory and Group Policy, meaning you can easily and efficiently create, deploy, and
enforce a Windows Firewall policy throughout your enterprise.

More Info For more information about configuring the Firewall for use with WMI and
other remote scripting technologies, see the article at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi
/connecting_through_windows_firewall.asp

(This link is included on the companion CD; click Connecting through Windows Firewall.)

Chapter 6: Remote Scripting 171

Understanding Remote Scripting Objects
To this point, everything we’ve discussed applies to both types of remote scripting. From now
on, however, we’re going to focus on deployment scripting. (Much of the rest of this book,
especially the chapters about WMI and ADSI, covers the techniques used in connectivity
scripting.)

Windows Script Host (WSH) 5.6 includes objects designed for remote scripting. These
objects take a script from your computer, copy it to a remote computer, and then execute it on
the remote computer. Some objects can transfer script errors back to your computer, where
you can have your original script deal with them appropriately. Remote scripting involves two
scripts.

■ The deployment script, which runs on your computer, deploys scripts to one or more
remote computers, and can deal with errors raised from the remote computers.

■ The deployed script, which is copied to and runs on the remote computer, can send
errors back to your computer.

Essentially, a simple deployment script looks something like this.

Dim objController, objRemoteScript

Set objController = CreateObject("WshController")

Set objRemoteScript = objController.CreateScript(_

 "C:\MyScript.vbs", "Client1")

objRemoteScript.Execute

Do While objRemoteScript.Status <> 1

 WScript.Sleep 1000

Loop

MsgBox "Script complete"

We’ll discuss each of these objects and methods in the following sections. The core objects
here are WshController, which copies the script, and WshRemote, which represents the remote
script and provides methods for controlling it (to a limited degree).

Keep in mind that two restrictions that apply when using the WshController object.

■ You must be a local administrator on the remote computer.

■ The script you deploy to the remote computer must not attempt to interact with the user
interface by using WScript.Echo, MsgBox, InputBox, or similar functions. The deployed
script will not run in an interactive desktop, so there will be no way for someone to
respond to dialog boxes.

172 Part III: Advanced Scripting Techniques, Tools, and Technologies

Using Other Kinds of Remote Scripting
The WshController object is the only object built into the Windows Script Host
specifically intended for remote scripting, but that doesn’t mean it’s the only kind
of remote scripting available. Some third-party manufacturers have produced robust
and flexible technologies for remote scripting. For example, iTriopoli’s AdminScript-
Editor (http://www.adminscripteditor.com) includes Script Packager, which you use to
bundle scripts into a standalone executable file and deploy it. SAPIEN PrimalScript
(http://www.primalscript.com) has a similar feature, the Evolved Script Packager, which
offers a great deal of deployment flexibility.

Another script editor, OnScript (http://www.onscript.com) includes remote script-
management capabilities. You can use OnScript to manage and execute a repository of
scripts on a remote computer. The scripts will run on the remote computer and send
status information back to your OnScript console. PrimalScript incorporates a feature
roughly similar in purpose, Remote Script Execution Engine, which provides enhanced
flexibility for running remote scripts, monitoring their status, and so forth.

Because each of these features is associated with a specific commercial product, we
won’t cover them in this book. However, if remote scripting of this kind is a common
need in your environment, we recommend that you check out one or all of these tools
(each is available in a trial version) to see which one best meets your needs.

Understanding Remote Scripting Methods
The WshController object has no properties, and one method, CreateScript. This method
accepts only two arguments: the full path and filename of the script to deploy, and the com-
puter name where the script should be copied. The CreateScript method copies the script (the
remote computer must also have WSH 5.6 installed), returns a WshRemote object that repre-
sents the remote script, and provides properties and methods for working with it.

■ The Error property represents a WshRemoteError object, which holds information about
any errors that caused the remote script to terminate unexpectedly.

■ The Status property can have a value of 0, meaning the script is running, or a value of 1,
meaning the script has completed.

Chapter 6: Remote Scripting 173

■ The Execute method runs the remote script. When the script completes, it is generally
removed from the computer. (There are a few very rare circumstances in which it might
be left behind, such as when connectivity to the remote computer was interrupted
before the script completed.)

■ The Terminate method cancels the remote script. It first tries to end the script by sending
an appropriate close message, but if that doesn’t work, it simply terminates the remote
script’s process.

Use the WshController.CreateScript object to create your remote script, use the WshRemote.Exe-
cute object to run it, and check the WshRemote.Status object to see when the script is done.
Using the WshRemoteError object is a bit more complicated because there’s no status that tells
you whether an error occurred. Instead, when an error occurs, an event is raised. Because
events aren’t something that are usually dealt with in VBScript, they can seem strange. Essen-
tially, there are two steps for working with events.

1. Create a subroutine that handles the event.

2. Direct the object that might raise the event to use your subroutine.

To react to an error raised by a remote script, for example, you might write a short subroutine
that simply displays the remote error.

Sub remote_Error

 Dim objError

 Set objError = objRemote.Error

 WScript.Echo "Error - Line: " & theError.Line & _

 ", Char: " & theError.Character & vbCrLf & _

 "Description: " & theError.Description

 WScript.Quit -1

End Sub

You would add this subroutine to the earlier script that declared the objRemote object. With
the subroutine in place, you just need to tell the objRemote object to use the new remote_Error
subroutine if its Error event occurs.

WScript.ConnectObject objRemote, "remote_"

This command tells the objRemote object that any events will be handled by subroutines
whose names are prefixed with remote_. In other words, the Error event will be handled by
remote_Error. The objRemote object also has a Start event and an End event, which would be
handled by remote_Start and remote_End, respectively. The whole script, in one piece, is shown
in Listing 6-1 on the next page.

174 Part III: Advanced Scripting Techniques, Tools, and Technologies

Listing 6-1 Remote Scripting with Error Handling
Dim objController, objRemoteScript

Set objController = CreateObject("WshController")

Set objRemoteScript = objController.CreateScript(_

 "C:\MyScript.vbs", "Client1")

WScript.ConnectObject objRemoteScript, "remote_"

objRemoteScript.Execute

Do While objRemoteScript.Status <> 1

 WScript.Sleep 1000

Loop

MsgBox "Script complete"

Sub remote_Error

 Dim objError

 Set objError = objRemoteScript.Error

 WScript.Echo "Error - Line: " & objError.Line & _

 ", Char: " & objError.Character & vbCrLf & _

 "Description: " & objError.Description

 WScript.Quit -1

End Sub

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

Troubleshooting the WshController Object
Unfortunately, WshController has a few known problems, and because WSH 5.6 is con-
sidered a “mature” product by Microsoft, we’re unlikely to see outright fixes to them.
There are, however, workarounds.

One known problem is that an error message, “ActiveX component can’t create object,”
appears when you try to use the CreateScript method. The bug occurs when the WSH
remote scripting setup wasn’t done correctly. Microsoft’s official resolution is to register
the WScript object by typing wscript –regserver in a command-line window.

However, that might not always solve the problem. You might also need to add a value
to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Script Host\Settings.
This should be a string value, its name must be Remote, and the data should be the num-
ber 1 (even though it’s a string value). You’ll need to add this value to the remote com-
puter to enable remote scripting functionality. You must have local Administrator
privileges on the remote computer to enact this.

Chapter 6: Remote Scripting 175

Viewing Remote Scripting in Action
Listing 6-2 is a script that deploys C:\Deployed.vbs to each computer listed in C:\Comput-
ers.txt. Results are logged to C:\Log.txt.

Listing 6-2 Remote Scripting with Logging
Dim objController, objRemoteScript, objFSO

Dim objTSIn, objTSOut, strComputer

'Create objects

Set objController = CreateObject("WshController")

Set objFSO = CreateObject("Scripting.FileSystemObject")

'Read computer names from file

Set objTSIn = objFSO.OpenTextFile("C:\computers.txt")

'Open output file for log

Set objTSOut = objFSO.CreateTextFile("C:\log.txt", True)

Do Until objTSIn.AtEndOfStream

 'Deploy script to remote computer

 strComputer = objTSIn.ReadLine

 objTSOut.WriteLine strComputer & ": Deploying at " & Now

 Set objRemoteScript = objController.CreateScript(_

 "C:\Deployed.vbs", strComputer)

 WScript.ConnectObject objRemoteScript, "remote_"

 objRemoteScript.Execute

 Do Until objRemoteScript.Status = 1

 WScript.Sleep 1000

 Loop

 objTSOut.WriteLine strComputer & " Completed at " & Now

 Set objRemoteScript = Nothing

Loop

objTSIn.Close

objTSOut.Close

WScript.Echo "Deployment script complete."

Sub remote_Error

 Dim objError

 Set objError = objRemote.Error

 objTSOut.WriteLine strComputer & ": Error at " & Now

 objTSOut.WriteLine " Line: " & objError.Line & _

 ", Char: " & objError.Character & vbCrLf & _

 "Description: " & objError.Description

 WScript.Quit -1

End Sub

176 Part III: Advanced Scripting Techniques, Tools, and Technologies

Let’s go through each section of this script and examine what it’s doing. The script begins by
declaring a FileSystemObject object and a WshController object.

Dim objController, objRemoteScript, objFSO

Dim objTSIn, objTSOut, strComputer

'Create objects

Set objController = CreateObject("WshController")

Set objFSO = CreateObject("Scripting.FileSystemObject")

Next, the script opens C:\Computers.txt, which lists one computer name per line. The script
also opens a text file for output, which is where we’ll write remote script status information.

'Read computer names from file

Set objTSIn = objFSO.OpenTextFile("C:\computers.txt")

'Open output file for log

Set objTSOut = objFSO.CreateTextFile("C:\log.txt", True)

The script will now read through each line of C:\computers.txt, entering each computer name
into the variable strComputer.

Do Until objTSIn.AtEndOfStream

 'Deploy script to remote computer

 strComputer = objTSIn.ReadLine

Note that the script’s log messages include the computer name, what happened, and a date
and time stamp.

 objTSOut.WriteLine strComputer & ": Deploying at " & Now

Now the script creates a WshRemote object and connects the object’s events to an event han-
dler subroutine. Because we don’t care about the Start or End events, we didn’t include sub-
routines for those. When those events are raised, nothing will happen because no matching
subroutine exists.

 Set objRemoteScript = objController.CreateScript(_

 "C:\Deployed.vbs", strComputer)

 WScript.ConnectObject objRemoteScript, "remote_"

 objRemoteScript.Exceute

Next, the deployment script pauses until the deployed script finishes executing. Upon its
completion, we’ll write another log entry, and then release the WshRemote object so that it can
be reused in the next iteration of the loop.

Chapter 6: Remote Scripting 177

 Do Until objRemoteScript.Status = 1

 WScript.Sleep 1000

 Loop

 objTSOut.WriteLine strComputer & " Completed at " & Now

 Set objRemoteScript = Nothing

Loop

When the script concludes, we’ll close the text files and display a completion message.

objTSIn.Close

objTSOut.Close

WScript.Echo "Deployment script complete."

Here’s the WshRemote Error event handler. It’s simply writing error information to our log file.

Sub remote_Error

 Dim objError

 Set objError = objRemote.Error

 objTSOut.WriteLine strComputer & ": Error at " & Now

 objTSOut.WriteLine " Line: " & objError.Line & _

 ", Char: " & objError.Character & vbCrLf & _

 "Description: " & objError.Description

 WScript.Quit -1

End Sub

This is a basic script, but it can be easily expanded to perform additional logging or error
handling.

Summary
In this chapter, we covered two kinds of remote scripts: those that connect to remote comput-
ers to perform a task, and those that deploy scripts to remote computers and execute them
there. We discussed the security issues that are involved in remote scripting, and explained
how the underlying security layers work, which will help you better analyze and troubleshoot
remote scripting security problems when they occur. With this information, you will be pre-
pared to use the scripting techniques in this book and elsewhere.

179

Chapter 7

Database Scripting

In this chapter:

Understanding ActiveX Data Objects . 179

Understanding Connection Objects . 181

Understanding Recordset Objects . 185

Understanding Command Objects . 191

Understanding the Differences Between Databases . 195

Understanding SQL . 197

Viewing ActiveX Data Objects . 202

Summary . 206

Databases can seem like one of the most difficult technologies to work with from within a
script. However, the topic seems more complicated than it really is, largely because most of the
documentation for it is written for professional software developers. We’ll give you the infor-
mation you need about database scripting without overloading you with unnecessary details,
so you can quickly master the core concepts to make databases an integral part of your scripts.

Database scripting, at first glance, seems difficult, overly complex, and error prone. All that
can be true if you’re writing a major database-driven application. Fortunately, if you’re a Win-
dows administrator trying to automate tasks and keep track of information, databases can be
very easy to use. You simply need to focus on the core database technologies, without getting
distracted by all the features that only a professional developer would use.

You can use database scripting to perform tasks such as, for example, producing a simple
Microsoft Access application with which users could enter information about new accounts.
The script would read the new account information from the Access database and create the
necessary accounts. This kind of automation helps reduce a somewhat boring and error-
prone task into an easy, one-click operation.

Understanding ActiveX Data Objects
The technology that scripts use to access databases is called ActiveX Data Objects (ADO).
Don’t confuse this with ADO.NET, which is unique to the Microsoft .NET Framework, and
isn’t designed to be used from VBScript. ADO is the slightly older, just as functional counter-
part to ADO.NET that’s readily accessible to your scripts.

180 Part III: Advanced Scripting Techniques, Tools, and Technologies

It’s important to understand that ADO is not the only means of accessing data. For example,
Microsoft Excel and Access are both capable of storing data, and both can be manipulated
through Microsoft Office’s built-in Component Object Model (COM) automation interfaces.
Text files, another type of data storage, can be easily accessed through the FileSystemObject
library that you’ve no doubt used. The great thing about ADO, however, is that it can access all
these data sources—and many others—through a single, standardized interface. ADO’s ability
to access multiple data sources is illustrated in Figure 7-1. Your script uses ADO, which pro-
vides a single, standardized set of programming interfaces to access any kind of database.
ADO, in turn, translates that set of interfaces into the specific interfaces needed by whatever
data source you’re accessing. In other words, by taking the time to learn ADO, you’ll have
access to dozens of different types of databases with no additional effort—you won’t have to
learn separate techniques to access SQL Server databases, Access databases, text files, and
so forth.

Figure 7-1 Accessing databases through ADO

Before we continue our discussion of databases, however, let’s define our terminology.

■ A database is a file or other storage mechanism that contains data. A single SQL Server
computer can hold multiple databases, whereas a single Access .mdb file is a single data-
base.

■ A table is the organizational unit inside a database; most databases can contain one or
more tables. Tables are also referred to as entities, because they usually contain informa-
tion about a single type of object, or entity, such as people or computers. Each table con-
sists of the following:

❑ Columns (also called fields) contain the attributes about the entity represented by a
table. In a table containing information about people, for example, a column
might contain a person’s name or address.

Your Script

Windows Script Host

ActiveX Data Objects

Access Excel Text SQL Server

Chapter 7: Database Scripting 181

❑ Rows (also called records) contain all the information about a single entity. For
example, in a table containing information about computers, a row would include
all the columns that contain that computer’s name, IP address, and so forth.

An Excel file is a great way to visualize this structure. A single Excel workbook represents a
database, with each worksheet, or tab, representing a table, and the rows and columns repre-
senting records and fields, as shown in Figure 7-2.

Figure 7-2 Using an Excel file as a database

By and large, working with databases is as easy as working with an Excel workbook. However,
before you can begin working with a database, you first have to connect to it.

Understanding Connection Objects
In ADO, a Connection object is used to represent an electronic connection between your script
and a specific database. The Connection object tells ADO where the database can be found,
how to open it, what user name and password to use (if necessary), and so forth. Creating a
new Connection object is straightforward.

Dim objConn

Set objConn = CreateObject("ADODB.Connection")

You call the Connection object’s Open method, and pass it the information needed to connect
to the database. This is where most administrators start to get worried, because the so-called
connection strings can look amazingly complex. But they’re not—we’ll cover them in the next
two sections. When you’re done using your database (such as at the end of your script), you
call the Connection object’s Close method.

objConn.Close

Database

Record

Field

Table

182 Part III: Advanced Scripting Techniques, Tools, and Technologies

This ensures that all database files are properly closed, any server connections (such as those
used with SQL Server) are released, and so forth.

ODBC DSN Connections

ADO is capable of making a couple of different types of connections. One type is made
through Microsoft’s Open Database Connectivity (ODBC) technology. The main benefit of
using ODBC is that it offers easy configuration for Connection objects. This is technically an
outdated technology (it has since been replaced with OLE DB), but it still works, and because
your scripts aren’t likely to need super fast performance, ODBC does a great job.

You begin by creating an ODBC Data Source Name, or DSN. If you click Administrative Tools
on the Start menu and then click Data Sources (ODBC), you’ll see a list of existing DSNs,
much like the list shown in Figure 7-3. There are two types of DSNs: User DSNs, which are
configured on the local computer and are only accessible to you; and System DSNs, which
are configured on the local computer and are accessible to all users of that computer. You can
create whichever type is appropriate by clicking the Add button.

Figure 7-3 Working with ODBC DSNs

Figure 7-4 shows the Create New Data Source dialog box, which appears when you click Add.
In it, you select a driver for the DSN. Pick the driver that matches the type of database you
want to access: Access, Excel, dBase, FoxPro, Oracle, Paradox, Text files, SQL Server, and so
forth.

Chapter 7: Database Scripting 183

Figure 7-4 Selecting a database driver

When you click Finish, another dialog box appears that is specific to the type of database you
selected. For example, Figure 7-5 shows the dialog box for an Access database. You must spec-
ify a DSN, which is the name of your data source. For an Access database or an Excel file, you’ll
also specify the file to which you want to connect.

Figure 7-5 Creating an Access DSN

For SQL Server, you must complete a short wizard, which prompts you for the name of the
server, the database, login credentials, and so forth. Figure 7-6 on the next page shows a
screen from the SQL Server ODBC DSN wizard.

184 Part III: Advanced Scripting Techniques, Tools, and Technologies

Figure 7-6 Creating a SQL Server DSN

Regardless of the type of database you will connect to, when you’re finished, you’ll have a new
DSN and you’ll know its name. Activating the DSN is as simple as calling your Connection
object’s Open method, and giving it the DSN.

objConn.Open "MyDSN"

The downside of connecting in this fashion is that your script now requires that the DSN exist
on the computer. In other words, your script won’t run properly on other computers until you
set up the DSN, which can be a bit difficult to deploy automatically. However, for scripts that
you will only run from your own computer, DSNs are a convenient, easy-to-configure way of
connecting to databases.

Best Practices Whenever you use a DSN in your scripts, be sure to include some comment
lines describing to what the DSN is connected. These comments will help you, or another
administrator, re-create the DSN in the future. You should also document where the database
resides, and briefly describe its structure. With these comments in place, everything your script
needs will be documented right in the script, so it will be self-contained and easy to maintain.

Connection Strings

Connection strings can seem intimidating, but they provide a more flexible connection option
than DSNs. Unlike a DSN, a connection string doesn’t require any special configuration on
the computer where the script will run. The connection string itself contains everything the
Connection object needs to find the database. Another advantage is that connection strings can
utilize newer OLE DB database drivers (called providers), which will make any developers in
your environment happier (you probably won’t notice any differences). Connection strings
can vary widely between databases; the following are examples of the most common. Note

Chapter 7: Database Scripting 185

that the elements in italics are placeholders intended to be replaced with your own informa-
tion, such as database names. Information in [square brackets] is optional; you can omit those
elements if you don’t need them in your environment.

■ The connection string to Microsoft Access is:

Provider=Microsoft.Jet.OLEDB.4.0;Data Source=database path and filename;

■ The connection string to Microsoft Excel is:

Provider=Microsoft.Jet.OLEDB.4.0;Data Source=database path and filename;Extended

Properties=Excel 8.0;

■ The connection string to Microsoft SQL Server is:

Provider=SQLOLEDB;Data Source=server name;Initial Catalog=database name; [User ID=user

name;Password=password]

■ The connection string to text files (such as CSV, which includes the column names in
the first row) is:

Provider=Microsoft.Jet.OLEDB.4.0;Data Source=database path;Extended

Properties=Text;HDR=Yes;FMT=Delimited;

Caution Don’t hard-code passwords into your scripts. If you need to provide a password in
a connection string, prompt for it by using the InputBox function or some other technique, and
then append the password into the connection string.

Using the connection string is straightforward—simply pass it as the argument of the Open
method.

objConn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\MyDB.mdb;"

Note that when you’re using the text file connection string, you’re providing only the path to
the text file; you’ll specify the filename in your query, which we’ll cover next.

Understanding Recordset Objects
A database table is simply a set of rows, or records. The word recordset, then, means pretty
much the same thing as the word table. That’s certainly the case in ADO, where a Recordset
object represents all, or part, of a database table. When you query information from a
database, ADO stores the data in a Recordset object so that you can work with it. Suppose
you have a database table named Users that contains columns named UserID, UserName, and
UserDescription. You could query all the rows from that table like this.

Dim objRS

Set objRS = CreateObject("ADODB.Recordset")

Set objRS = objConn.Execute("SELECT * From Users")

186 Part III: Advanced Scripting Techniques, Tools, and Technologies

Here are some things to note about querying a database.

■ This code snippet just shown assumes that a Connection object named objConn has been
created and opened already.

■ The second line in the block just shown is technically unnecessary. The Execute method
of the Connection object returns an ADODB.Recordset object, so you don’t specifically
have to tell VBScript that it’s coming. However, including this line makes it easier for
script editors to provide assistance specific to the Recordset object, which is why we
included it.

■ We cover the query syntax—called Structured Query Language (SQL)—later in this
chapter. However, for now you need to know that the SELECT * FROM Users statement
retrieves all rows and columns from the Users table.

Best Practices Professional software developers dislike statements like SELECT * FROM
Users because it doesn’t perform well. A developer would prefer a SELECT UserID,User-
Name,UserDescription FROM Users statement because it returns the same results and explicitly
lists the columns to be retrieved. Performance considerations aside, we also prefer the second
method because it makes the script self-documenting. The statement clearly lists the column
names being retrieved, so you don’t have to hunt around in the database to figure it out later.

Forward-Only Recordsets

Recordsets provide access to a single row, or record, at a time. They use an internal pointer to
keep track of the current row. By default, they start with the pointer on the first row. You can
use one of four statements to move the pointer around.

■ MoveNext

■ MovePrevious

■ MoveFirst

■ MoveLast

However, the example we just showed you—using the Connection object’s Execute method to
return a recordset—returns a special type of recordset called a forward-only recordset. These are
fast performers, but they only support the MoveNext statement, meaning after you’ve moved
on to the next row, you can’t go back. In a lot of cases, such as enumerating through a list of
users to be added to Active Directory, forward-only functionality is all you need.

The Recordset object also supports a property called EOF, which stands for end of file. This
property is set to TRUE when the recordset pointer is positioned past the last row of data. An
easy way to enumerate through each row is to use the EOF property in a loop.

Chapter 7: Database Scripting 187

Do Until objRS.EOF = True

 objRS.MoveNext

Loop

Of course, just looping through all the records isn’t terribly useful—you need to somehow get
to the data inside those records. You do this by referring to the column name you want.

Do Until objRS.EOF = True

 strUser = objRS("UserName")

 strID = objRS("UserID")

 strDesc = objRS("Description")

 objRS.MoveNext

Loop

This pulls the contents of each row into a set of string variables, which can then be used in
other statements to add the new user to Active Directory.

Tip Don’t forget that MoveNext statement inside the loop. Without it, the recordset pointer
is never moved, so it never reaches the end. The loop continues indefinitely, or until you press
Ctrl+Break to terminate the script.

When you’re finished using the recordset, it’s a good idea to close it, releasing any resources
it had been using.

Do Until objRS.EOF = True

 strUser = objRS("UserName")

 strID = objRS("UserID")

 strDesc = objRS("Description")

 objRS.MoveNext

Loop

objRS.Close

Other Types of Recordsets

There are several other types of recordset are available to you. After forward-only (which is the
default), the most useful type is dynamic. To open a dynamic recordset, you have to explicitly
declare a new Recordset object and use its Open method.

Dim objRS

Set objRS = CreateObject("ADODB.Recordset")

objRS.Open "SELECT Column FROM Table", objConn, 2

Note that the Open method requires a SQL statement, a reference to an open Connection
object, and the number 2, which indicates that you want a dynamic recordset. If you forget the
2, the default is 0, which opens a forward-only recordset.

188 Part III: Advanced Scripting Techniques, Tools, and Technologies

Note Not all database providers support dynamic recordsets. If you get an error trying to
open one, try opening a forward-only recordset. If that works, your database provider doesn’t
support a dynamic recordset.

With a dynamic recordset, you can use the full range of the Recordset object’s navigation meth-
ods to move the recordset pointer forward and backward. You can also modify a dynamic
recordset.

Dim objRS

Set objRS = CreateObject("ADODB.Recordset")

objRS.Open "SELECT Birthday FROM Table WHERE [Name] = 'Don'", objConn, 2

objRS("Birthday") = "11/22/71"

objRS.Update

Note Sometimes, a database provider will give you a dynamic recordset, but won’t support
the Update method. You won’t know this is the case until you try it and get an error on the
update attempt. Later in this chapter, we’ll show you other ways to add and change data.

In the example just shown, a WHERE clause was added to the SQL statement, so the only
rows returned are those in which the Name column contains the value Don. The query
selected only one column, Birthday, and we can assign a new value to that column. Calling the
Update method saves the change back to the database. Remember to call the Update method
before calling a statement such as MoveNext, which moves the recordset pointer. Failing to call
Update first could result in your changes being lost, depending on the type of database to
which you’re connected.

Note Notice that the Name column is listed inside square brackets. That’s because the word
Name has a specific meaning in most database systems. By enclosing it in square brackets, we
can ensure that it’ll be treated as a column name, and not as something else.

You can also use dynamic recordsets to add new records.

Dim objRS

Set objRS = CreateObject("ADODB.Recordset")

objRS.Open "SELECT * FROM Table", objConn, 2

objRS.AddNew

objRS.("UserName") = "Don"

objRS("Birthday") = "11/22/71"

objRS.Update

This is similar to changing data. You call the AddNew method to create a new, blank record,
and move the recordset pointer to it. Then you populate the table’s columns with data, and
call the Update method to save your changes.

Chapter 7: Database Scripting 189

Note Many databases contain internal rules about what type of data is allowed. For
example, if the Birthday column is defined as a date field, and you try to insert a name,
the database will reject your change. That rejection probably won’t occur until you call the
Update method, which is when data is saved back to the database. When failures occur on
the Update method, carefully check the changes you’ve made, because one of them is proba-
bly causing the problem.

Another less common type of recordset is static (its number is 1 in the Recordset object’s Open
method). It’s a combination of the forward-only and dynamic recordset types. You can use it
to move back and forth through a static recordset, but you can’t make changes.

Recordset Tips and Tricks

There are a few handy tips and tricks for working with recordsets. First, the Recordset object
has a RecordCount property, which you’d think would provide the number of records inside
the recordset. Unfortunately, the recordset doesn’t know how many records there are until
you’ve moved the pointer to the last record. With a forward-only recordset, that’s pretty use-
less, but with a dynamic recordset you can move back and forth between records, as shown in
this snippet.

Dim objRS

Set objRS = CreateObject("ADODB.Recordset")

objRS.Open "SELECT * FROM Table", objConn, 2

objRS.MoveLast

objRS.MoveFirst

WScript.Echo objRS.RecordCount & " records queried."

This usually provides an accurate count (depending on the database type) and ends with the
recordset pointer positioned on the first row, right where it started.

You might want to check if a recordset is completely empty when, for example, your query
doesn’t return any results. If you run the following when Table is empty, you’ll get an empty
recordset.

Dim objRS

Set objRS = CreateObject("ADODB.Recordset")

objRS.Open "SELECT *FROM Table", objConn, 2

An easy way to check is to see if the recordset’s EOF and BOF (beginning of file) properties are
TRUE. BOF is only TRUE when the recordset pointer is positioned on the first record. If both
BOF and EOF are TRUE, the recordset is empty.

Dim objRS

Set objRS = CreateObject("ADODB.Recordset")

objRS.Open "SELECT *FROM Table", objConn, 2

If objRS.EOF And objRS.BOF Then

 'empty recordset

End If

190 Part III: Advanced Scripting Techniques, Tools, and Technologies

Recordset objects have a few other useful properties and methods, including the following:

■ The Bookmark property can be used to store the position of any record and then quickly
return to that record. As you might expect, this property isn’t useful in forward-only
recordsets, because the recordset can’t move backward to a bookmark’s location. To use
a bookmark, position the recordset—by using MoveFirst, MoveNext, or whatever—in the
record you want to remember. Assign a variable to the Bookmark property (myVar =
objRS.Bookmark). To later return to the bookmark, simply assign the Bookmark property
to that variable (objRS.Bookmark = myVar). You can have multiple bookmarks in effect at
once, provided you have a unique variable to hold each one.

■ The State property can be used to check whether a recordset is open. The State property
will be zero when a recordset is closed, and 1 when it is opened. Other states—2 for con-
necting, 4 for executing a query, and 8 for fetching data—exist, but typically change rapidly.

■ The Sort, Filter, and MaxRecords properties can be used to sort the recordset, filter it so
that only specific rows are accessible, and limit the number of rows returned by a query.
However, it’s more efficient to perform these operations in the original SQL query used
to populate the recordset. We’ll show you how to do that later in this chapter.

■ The Find method is used to locate matching records. Execute something like objRS.Find
"Column = Value" (or objRS.Find "Column = 'Value'" if the column contains string values)
to immediately move the recordset pointer to the first matching column. You can also
execute objRS.Find "Column = Value", 5 to skip 5 rows (or any other number you specify)
before beginning the search. Executing objRS.Find "Column = Value",,-1 will search back-
ward (in a dynamic or static recordset) rather than forward. The Seek method works
similarly, but isn’t quite as flexible.

■ The Delete method deletes the current row in a dynamic recordset.

■ The Supports method can be used to determine the capabilities of a given recordset,
based on its type and the database provider. Supports accepts a number, which specifies
how many capabilities you’re checking. It returns TRUE if all the capabilities specified
are supported, FALSE if not. For example, objRS.Supports(16778240) will return TRUE if
objRS supports the AddNew method. The following list provides values for most of the
available recordset capabilities. To check for multiple capabilities, use Supports once per
capability, or combine capabilities by using the Boolean Or operator (for example, exe-
cute objRS.Supports(16778240 Or 512) to check for AddNew and MovePrevious support).

❑ AddNew = 16778240

❑ Bookmark = 8192

❑ Delete = 16779264

❑ Find = 524288

❑ MovePrevious = 512

❑ Update = 65536

Chapter 7: Database Scripting 191

There are a lot more things that you can do with a recordset, but these are the techniques
you’ll use most when writing administrative scripts.

Tip You can find the full ADO documentation in the Microsoft MSDN Library if you’re using
the CD-based or DVD-based Library (ask the developers in your organization for an old copy).
To navigate through the Table of Contents click Data Access, click Reference, click ADO, click
ADO Programmer’s Reference, click ADO API Reference, and finally click ADO Objects and
Interfaces. An online version of the Library is available at http://msdn.microsoft.com/library.
Because the URLs and organization of the online Library changes from time to time, we can’t
guarantee that the ADO information will be in the same location, or even available, but at press
time, to navigate to the topic, click Win32 and COM Development, click Data Access and Stor-
age, click ADO, click ADO, click ADO Programmer’s Reference, click ADO API Reference, and
finally click ADO Objects and Interfaces. The current URL to this location is

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm
/mdmscadoapireference.asp

(This link is included on the companion CD; click ADO API Reference.)

The following best practices apply to accessing any database by using code or a script.

■ Always specify a column list in SELECT statements, and only specify the columns you
plan to use.

■ Unless you actually need all the data in a table, specify a WHERE clause to help reduce
the amount of data returned.

■ Dynamic recordsets require more computing resources than forward-only recordsets, so
use a forward-only recordset whenever possible.

There are ways to add and change data other than the methods available to a dynamic
recordset—we’ll cover them later in this chapter.

Understanding Command Objects
Most scripters ignore ADO Command objects. In fact, if you have no plans to work with SQL
Server-based databases, you can safely skip this section. If you intend to work with SQL
Server, however (or other relational database management systems like Oracle, Sybase, or
DB2), Command objects provide better performance and help you better utilize the capabili-
ties built into the server software.

A Command object is a way of passing a query to the server in a way that allows the server to
execute the command more efficiently. The biggest benefit is seen when you’re accessing a
stored procedure, which is a special type of script contained and executed on the server. Cre-
ating stored procedures is beyond the scope of this book, but if there are stored procedures on
your server, we encourage you to use them through the Command object. Even without stored

192 Part III: Advanced Scripting Techniques, Tools, and Technologies

procedures, however, the Command object is useful in conjunction with database servers,
because it allows queries to be executed more efficiently, especially if the query will be exe-
cuted more than once. You create a Command object in much the same way as other database
objects.

Dim objCmd

Set objCmd = CreateObject("ADODB.Command")

There are three required properties that must be set for the Command object to function
properly.

objCmd.ActiveConnection = objConn

objCmd.CommandText = "SELECT Column1 FROM Table2"

objCmd.CommandType = 1

The objConn property must represent a declared, opened Connection object. You can then use
the Command to open a Recordset object.

Set objRS = objCmd.Execute

These six lines of code submit a query to the server and return a forward-only recordset.
You wouldn’t use this format if you were executing a stored procedure, however. Most stored
procedures are parameterized, that is, they accept one or more input arguments and might
even provide output through an output argument—not unlike a command-line utility.
Using a stored procedure with a Command object requires some special setup. First, you
set the CommandText property to be the name of the stored procedure, and then you set the
CommandType property to the appropriate value for stored procedures.

objCmd.ActiveConnection = objConn

objCmd.CommandText = "sp_MyProc"

objCmd.CommandType = 4

Next you need to add the parameters. Suppose your stored procedure has three parameters,
Parm1, Parm2, and Parm3. Parm1 is a SQL Server varchar data type with a length of 10, Parm2
is a SQL Server bigint data type, and Parm3 is another bigint that will contain the stored pro-
cedure’s output.

objCmd.NamedParameters = True

objCmd.Parameters.Add(objCmd.CreateParameter("Parm1",200,1,10,MyVal1))

objCmd.Parameters.Add(objCmd.CreateParameter("Parm2",20,1,,MyVal2))

objCmd.Parameters.Add(objCmd.CreateParameter("Parm3",20,2,,MyVal3))

Setting the NamedParameters property to TRUE allows you to add parameters in any order,
regardless of the order in which they’re defined in the stored procedure. ADO matches param-
eters based on the names you provide. Here’s how the CreateParameter method works.

■ The method’s first argument is the name of the parameter.

Chapter 7: Database Scripting 193

■ The second argument is the data type of the parameter. Common values for data types
include the following:

❑ Bigint = 20

❑ Char = 129

❑ Currency = 6

❑ Date = 7

❑ Decimal = 14

❑ Single = 4

❑ Double = 5

❑ Empty = 0

❑ Int (integer) = 3

❑ Smallint = 2

❑ Tinyint = 16

❑ Varchar = 200

❑ VarWChar (SQL Server nvarchar type) = 202

■ The third argument specifies the direction of the parameter: 1 for input, 2 for output.

■ The fourth argument is optional, and is only required for variable-length data types such
as varchar, char, and so forth. This argument specifies the length of the data field. In this
example, Parm1 was declared with a length of 10 characters, so this length is passed in
the CreateParameter argument. If you’re not using this argument—it isn’t required for any
of the int data types, for example—leave it blank, but be sure to include the extra comma
as shown in the example just shown.

■ The final argument is the value you’re passing to the parameters, or the variable in
which an output parameter’s value will be stored.

If you’re having trouble figuring out what goes where, talk to the developer who created the
stored procedure, if possible.

Note You can use tools such as SQL Server Query Analyzer (in SQL Server 2000), SQL Man-
agement Studio (in SQL Server 2005), or SQL Express Manager (for SQL Server 2005 Express
Edition) to examine stored procedures and find their input and output parameters and data
types.

Listing 7-1 lists all stored procedures in a database, and their parameters (including name,
type, direction, and so forth). This script was written using an extension to ADO called ADOX.
Although ADOX is beyond the scope of this book, this short script will make it easier to figure

194 Part III: Advanced Scripting Techniques, Tools, and Technologies

out how to use any stored procedures you might have available. Note that system-stored pro-
cedures (those built into SQL Server) are not listed. Also note that you need to modify the con-
nection string to match your environment (server name, database name, and so on). This
connection string includes additional parameters to utilize SQL Server’s Windows-integrated
security.

Note For Listing 7-1 to run properly, you must have appropriate permissions, and the data-
base server must support the ADOX library. If your results include procedure names but not
parameters, you might not have sufficient permissions, or your database server might not be
configured to enumerate parameters through ADOX.

Listing 7-1 List Stored Procedures
Dim objConn

Set objConn = CreateObject("ADODB.Connection")

objConn.ConnectionString = "Provider=SQLOLEDB.1;Integrated " & _

 "Security=SSPI;" & _

 "Persist Security Info=False;Initial " & _

 "Catalog=database-name;Data Source=server-name"

objConn.Open

Dim objCatalog

Set objCatalog = CreateObject("ADOX.Catalog.2.8")

objCatalog.ActiveConnection = objConn

Dim objProcedure, objParameter

Set objProcedure = CreateObject("ADODB.Command")

Set objParameter = CreateObject("ADODB.Parameter")

'show procedure count

objCatalog.Procedures.Refresh

WScript.Echo objCatalog.Procedures.Count & " procedures"

WScript.Echo ""

'set the procedure name

For Each objProcedure In objCatalog.Procedures

 WScript.Echo "Procedure " & objProcedure.Name

 WScript.Echo "Parameters: "

 'show parameters

 On Error Resume Next

 For Each objParameter In objProcedure.Parameters

 WScript.Echo " " & objParameter.Name & _

 ", type=" & objParameter.Type & _

 ", direction=" & objParameter.Direction & _

 ", size=" & objParameter.Size

 Next

 On Error GoTo 0

 WScript.Echo String(40,"-")

Next

Chapter 7: Database Scripting 195

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

Understanding the Differences Between Databases
Although ADO provides fairly uniform access to a variety of data sources, some data sources
have slightly different requirements than others. To prevent you from becoming stuck because
of these different requirements, we’re going to explain as many of them as we can, focusing on
the ones that caused problems for us when we were first working with ADO.

Text Files

The issue with text files is that the connection strings don’t specify the file.

Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Data\;Extended

Properties=Text;HDR=Yes;FMT=Delimited;

The connection string simply specifies the path where the file is located. You specify the file
when you write your query, substituting the name of the file for the table name.

SELECT Column1,Column2 FROM MyTextData.csv

The text file also must contain column headers. In other words, the first row of the file must
be the names of each column. Text files can be delimited by using commas, tabs, or other com-
mon characters. In a comma-separated values (CSV) file, any values that contain commas
must be further delimited inside double quotation marks.

Tip Because text files are so picky about formatting, we often find it’s easier to load an exist-
ing CSV or other text file into Excel, save it as an Excel workbook, and then work with it directly
in that format.

Excel Workbooks

Excel workbooks use most of the techniques we’ve already shown you. One thing that some-
times causes problems, however, is the worksheet names, which act as table names in ADO.
For example, if you have a sheet named Sheet1, you’d need to write your queries like this.

SELECT Column1, Column2 FROM [$Sheet1]

Also note that the Excel database provider uses the values in the first row of the worksheet as
the column names. Although you can also use column labels as names, we don’t recommend
this technique.

196 Part III: Advanced Scripting Techniques, Tools, and Technologies

SELECT A, B, C FROM [$Sheet1]

When you’re reading your script six months later, it’s going to be difficult to remember what
A, B, and C were supposed to represent. Instead, create column names that describe the data
in the column. UserName, UserPassword, ComputerName, ServicePackVersion, and so forth are
all good examples of column names that’ll be easy and clear when you need to work on your
script months down the line.

Access Databases

The biggest difference between Access and other providers is Access’ date delimiters. Most
databases allow you to treat dates as a string.

SELECT Column1, Column2 FROM Table WHERE DateField = '1/1/2005'

However, Access requires dates to be delimited with the hash or pound sign (#) character.

SELECT Column1, Column2 FROM Table WHERE DateField = #1/1/2005#

Other than this, you use Access in largely the same way you use the other techniques we’ve
showed you.

Tip If you execute a query and your script returns an error indicating that one or more
parameters is incorrect, check the spelling of your column names. That type of error is usually
Access’ way of telling you that it didn’t recognize one of the column names you specified.

Tip Whenever you’re debugging queries, one trick is to open the database directly in Access.
There, you can create a new query, switch to SQL view, and paste whatever query you’re
debugging. You can execute the query by clicking the Run Query (!) button, and Access will
immediately display any errors, often with more detail than the errors you get through ADO.
After your query is debugged, you can move it back into your script.

SQL Server Databases

SQL Server databases are essentially the standard around which ADO was built, so they don’t
have any differences from the examples and techniques we’ve shown you so far. However,
because a SQL Server is a true back-end database, rather than just a file like Access, Excel, or a
text file, SQL Server provides less support for some dynamic recordset capabilities. You also
need to be more careful when using SQL Server, and understand that others might be using
the server to work with data in the same or other databases. You should always specify the col-
umns to retrieve, retrieve as few rows and columns as possible, and use forward-only or static
recordsets (which help reduce overhead on the SQL Server computer).

Chapter 7: Database Scripting 197

Tip As with Access, debugging queries can be easier through SQL Server itself. Simply open
SQL Server’s Query Analyzer tool (which is installed as part of the SQL Server administrative
tools, and you need a license to run it). For SQL Server 2005, use Management Studio (Query
Analyzer was only a separate tool prior to SQL Server 2005). There, you can create a new query
and execute it. As with Access, you’ll get immediate and detailed feedback about any problems
with your query, and after your query is debugged, you can move it back into your script.

Understanding SQL
SQL is the universal language of databases, and ADO is built around it. Although you can use
ADO without using SQL, you’ll get the most power and flexibility from ADO when it is used
in conjunction with the SQL language. In the next couple of sections, we’ll introduce you to
the SQL language as it’s used to query and change data, and we’ll provide you with a complete
toolset for database scripting.

Queries that Return Results

The most common SQL query is the SELECT query, which is used to retrieve data from a data-
base. The simplest form of a SELECT query retrieves all columns and rows from a given table.

SELECT * FROM MyTable

You can improve the performance and the maintainability of your script by specifying the col-
umns that you’re querying, even if you’re querying all the columns in the table.

SELECT UserName, UserID, Description FROM MyTable

Best Practices SQL is not case-sensitive. However, as a general rule, SQL keywords—like
SELECT and FROM—are in all uppercase, whereas object names—such as column and table
names—are in camel case.

The WHERE Clause

You can and should limit the rows returned by a query to just those you need. A WHERE
clause can provide a filter mechanism and limit the number of rows.

SELECT UserName, UserID, Description

FROM MyTable

WHERE UserName = 'DonJ'

198 Part III: Advanced Scripting Techniques, Tools, and Technologies

The WHERE clause can contain any type of column-to-value comparison, much like a
VBScript If…Then construct. The following are some examples of comparisons.

■ A string comparison:

WHERE UserName = 'DonJ'

■ A wildcard string comparison:

WHERE UserName LIKE 'Don%'

This will match any string beginning with Don.

WHERE UserName LIKE '%on%'

This will match any string containing on.

■ A numeric comparison:

WHERE ServicePackVer > 2

■ A comparison from a list:

WHERE ServicePackVer In (1,2,3)

This will match any rows where the ServicePackVer column contains 1, 2, or 3.

■ A range comparison:

WHERE StartDate BETWEEN '1/1/2000' AND '1/1/2001'

■ Multiple comparisons:

WHERE (UserName Is Null) Or (UserName = '')

This will match rows where the UserName column contains the special Null value, or
where it contains an empty string.

The TOP Clause

Another way to limit the number of rows returned is to use the TOP clause. This clause works
with SQL Server and Access, and it can work with other database providers as well. You can
choose to return a specific number of rows, or a specific percentage of rows.

SELECT TOP 5 UserName FROM Users

SELECT TOP 5 PERCENT ComputerName FROM Computers

Of course, TOP can be combined with WHERE to further limit the results returned by the
query. You can also add an ORDER BY clause to sort the results by a specified column. When
WHERE is combined with TOP, the records are first sorted, and then the TOP clause is exe-
cuted, so you’re getting the first of however many rows based on the sort criteria. Here are
some examples of TOP and ORDER BY in use.

SELECT UserName, UserID FROM Users ORDER BY UserName

SELECT TOP 5 ComputerName FROM Computers ORDER BY InstallDate

SELECT UserName FROM Users ORDER BY DateAdded DESC

Chapter 7: Database Scripting 199

Note Exactly how the TOP clause works can be very confusing. For example, suppose you
have a table that includes a column named Version. Within your table, the Version column con-
tains either the value 1 or the value 2, but no other values. Were you to execute a query such
as SELECT TOP 5 Version FROM MyTable, the query would return all the rows in the table,
because it would be trying to select the first 5 values for the Version column. With only two
values available, all the rows would fit into the TOP clause’s criteria. This is true for most SQL-
compliant databases, including Access. Some databases might behave differently, and not
every database supports the TOP clause.

The ORDER BY Clause

The ORDER BY clause sorts in ascending order by default. In the previous example, we added
the DESC operator to force a reverse (descending) sort, so that the largest DateAdded value
(the most recent date) would appear first.

Note Each database provider supports a specific version and dialect of SQL. The techniques
we cover here should work on almost any database, but the database you’re working with
might have additional query capabilities.

The JOIN Clause

A JOIN clause connects two database tables on some related column, producing a set of query
results that combine data from the two joined tables. Say, for example, that you have a data-
base with two tables, Computers and Hotfixes. The Computers table contains basic information
about computers, and the Hotfixes table contains information about installed hotfixes. Each
hotfix installed on a computer is represented by a single row in the Hotfixes table. The Com-
puters table might be laid out something like this.

The Hotfixes table might look like this.

ComputerID ComputerName InstallDate WindowsVer ServicePackVer

2 GS77834 1/1/2001 5.1 2

3 RM88167 2/14/2001 5.1 1

4 ZW85839 3/15/2001 5/1 2

HotfixID ComputerID HFInstallDate

2 2 4/1/2004

3 2 4/13/2004

4 2 5/11/2005

5 3 4/1/2004

200 Part III: Advanced Scripting Techniques, Tools, and Technologies

The ComputerID column links, or joins the tables. By querying all rows in the Hotfixes table
that have a Computer ID of 2, you’ll find all the hotfixes installed on computer GS77834. It’s
possible to query all the information from each table in a single recordset. The resulting
recordset might look something like this.

Here’s the query that will create this recordset.

SELECT c.ComputerID, c.ComputerName, c.InstallDate, c.WindowsVer, c.ServicePackVer,

hf.HotfixID, hf.HFInstallDate

FROM Computers c INNER JOIN Hotfixes hf

ON c.ComputerID = hf.ComputerID

Note the following about how this query works.

■ The column names are prefixed with c or hf, indicating the table where each column is
located. Notice that the tables names—in the FROM portion of the query—are given the
c and hf alias.

■ The column aliases are necessary because the tables share one common column name:
ComputerID. The aliases allow ADO to determine to which column you’re referring.

■ The INNER JOIN clause in the FROM section specifies the tables that will be joined.

■ The ON clause specifies the columns that join the two tables.

■ You could also add TOP, WHERE, or ORDER BY clauses to further filter or sort the result
set.

Queries that include JOIN clauses can become quite complicated, especially when more than
two tables are involved. We find it’s easier to use a tool like Microsoft Access, which provides
a visual query builder, to create these complicated queries. After building your query graphi-
cally in Access, you can switch to SQL view, copy the SQL query syntax to the Clipboard, and
then paste it into your script.

Queries that Make Changes

We mentioned earlier that the dynamic recordset methods—Update, Delete, and AddNew—can
be used to add and change data. The dynamic recordset methods can also be used with the
SQL INSERT, UPDATE, and DELETE queries, which change data but don’t return any rows
into a recordset. You execute these queries by using the Connection or Command object’s Exe-
cute method. However, unlike previous examples, you don’t set a Recordset object as the result,
because these queries don’t return any results.

Computer-
ID

Hotfix-
ID HFInstallDate

Computer-
Name InstallDate

Windows-
Ver

Service-
PackVer

2 2 4/1/2004 GS77834 1/1/2001 5.1 2

2 3 4/13/2004 GS77834 1/1/2001 5.1 2

2 4 5/11/2005 GS77834 1/1/2001 5.1 2

Chapter 7: Database Scripting 201

objConn.Execute "DELETE FROM MyTable WHERE Column = 'Value'"

Note Notice that there are no parentheses around the query. The Execute method is being
used as a statement, not as a function, because it isn’t returning any results.

The DELETE Query

To delete data, specify the table name in your query. This query will delete everything in the
Users table.

DELETE FROM Users

Notice that no column list is included; none is needed, because entire rows are being deleted.
There’s no way to delete just a single column, so there’s no need to specify a column list. Most
of the time, you’ll add a WHERE clause to limit the scope of the deletion.

DELETE FROM Users WHERE UserDeactivated = 1

Keep in mind that there’s no “undo” function with the DELETE query. After records are
deleted, they’re gone forever unless you have a made backup.

The UPDATE Query

You use the UPDATE query to change data within existing rows of a table. The basic form of
the query looks like this.

UPDATE MyTable SET Column1 = 'Value1', Column2 = 'Value2'

WHERE Column = 'Value'

Omitting the WHERE clause causes the changes to be applied to all rows of the database, so be
sure to specify a valid WHERE clause unless you want to modify every row. You can change
any number of columns in the SET section by separating each column=value pair with a
comma.

The INSERT Query

You use the INSERT query to add new rows to the database. You must specify the table to
insert the rows into, the columns that you’re providing values for, and the values for those col-
umns. The basic form of the query looks like this.

INSERT INTO Table (Column1,Column2,Column3)

VALUES ('Value1', 'Value2', 'Value3')

Note Notice that string values are included in single quotation marks. Numeric values are
not. Date values, in SQL Server and most other database systems, are also included in single
quotation marks. An exception is Access, which requires date value to be enclosed within hash
marks (#).

202 Part III: Advanced Scripting Techniques, Tools, and Technologies

As a best practice, you should provide a value for every column. One of the most common
INSERT query errors is caused by not providing a required value for a column. For example,
a database might define a column named Description, and allow that column to be Null or
empty. In that case, you can legally omit Description from the column list. In other circum-
stances, the database might define default values for a column, meaning the database will pro-
vide values for the column if you don’t do so. In that case, if you’re okay with the default value,
you can omit the column from your INSERT query. In all other cases—when there’s no default
value, and the column doesn’t allow empty or Null values, you must include the column in
your query and provide a value for it.

The other common error is providing an incorrect data type, such as a string value for a
column that can only store numeric data. If that happens, your INSERT query will typically
return an error indicating a type mismatch. The exact error depends, of course, on the type of
database you’re using.

Viewing ActiveX Data Objects
Listing 7-2 connects to each computer in Active Directory and queries its current service pack
version. That information is then added to an Access database. Note that this script is connect-
ing to the database by means of an ODBC DSN named ServicePackDB, which you’ll need to
manually create.

On the CD A sample Access database with the appropriate table is included on this book’s
companion CD, along with Listing 7-2.

Listing 7-2 Create Service Pack Inventory
 'update an Access database with all AD computers

'and their current service pack version

'NOTE: See UpdateDB subroutine; expects an ODBC DSN

'to be defined.

'connect to the root of AD

Dim rootDSE, domainObject

Set rootDSE=GetObject("LDAP://RootDSE")

domainContainer = rootDSE.Get("defaultNamingContext")

Set oDomain = GetObject("LDAP://" & domainContainer)

'start with the domain root

WorkWithObject(oDomain)

Sub WorkWithObject(oContainer)

 Dim oADObject

 For Each oADObject in oContainer

 Select Case oADObject.Class

Chapter 7: Database Scripting 203

 Case "computer"

 'oADObject represents a COMPUTER object;

 'get the service pack version and log

 'it to the database

 Dim strComputer

 strComputer = oADObject.cn

 WScript.Echo strComputer

 UpdateDB strComputer, GetSPVer(strComputer)

 Case "organizationalUnit" , "container"

 'oADObject is an OU or container...

 'go through its objects

 WorkWithObject(oADObject)

 End select

 Next

End Sub

Sub UpdateDB(strComputer, strSPVer)

 Dim objConn, objRS, strSQL

 Set objConn = CreateObject("ADODB.Connection")

 objConn.Open "ServicePackDB"

 'see if computer exists in database

 Set objRS = objConn.Execute("SELECT ComputerName FROM Computers " & _

 "WHERE ComputerName = '" & strComputer & "'")

 If objRS.EOF And objRS.BOF Then

 'computer not in database = add

 strSQL = "INSERT INTO Computers (ComputerName," & _

 "ServicePackVersion,LastCheck) VALUES(" & _

 "'" & strComputer & "'," & _

 "'" & strSPVer & "'," & _

 "#" & FormatDateTime(Now,2) & "#)"

 Else

 'computer in database = update

 strSQL = "UPDATE Computers SET " & _

 "ServicePackVersion = '" & strSPVer & "', " & _

 "LastCheck = #" & FormatDateTime(Now,2) & "# " & _

 "WHERE ComputerName = '" & strComputer & "'"

 End If

 objRS.Close

 objConn.Execute strSQL

 objConn.Close

End Sub

Function GetSPVer(strComputer)

 On Error Resume Next

 Dim objWMIService

 Dim propValue

 Dim objItem

 Dim SWBemlocator

 Dim colItems

 Dim strSPVer

 Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

 Set objWMIService = SWBemlocator.ConnectServer(strComputer, _

 "\root\CIMV2")

 Set colItems = objWMIService.ExecQuery("Select * " & _

204 Part III: Advanced Scripting Techniques, Tools, and Technologies

 "from Win32_OperatingSystem",,48)

 For Each objItem in colItems

 strSPVer= objItem.ServicePackMajorVersion & "." & _

 objItem.ServicePackMinorVersion

 Next

 GetSPVer = strSPVer

End Function

Let’s take a more detailed look at what this script is doing. Notice that the script’s initial com-
ment lines include a reminder about the ODBC DSN, so anyone running the script in the
future can easily see the DSN they need to set up for the script to function.

'update an Access database with all AD computers

'and their current service pack version

'NOTE: See UpdateDB subroutine; expects an ODBC DSN

'to be defined.

The script continues by connecting to the root of the default domain. That means the script
needs to run on a computer that is in the domain with which you want to work. Incidentally,
you’ll need to be a local administrator on each computer in the domain for the script to func-
tion. Ideally, you’ll run the script as a member of the Domain Admins group.

'connect to the root of AD

Dim rootDSE, domainObject

Set rootDSE=GetObject("LDAP://RootDSE")

domainContainer = rootDSE.Get("defaultNamingContext")

Set oDomain = GetObject("LDAP://" & domainContainer)

The WorkWithObject subroutine is called, and it passes a reference to the root of the domain.

'start with the domain root

WorkWithObject oDomain

The subroutine is designed to enumerate each object in the current container. A Select…Case
construct handles both Computer and other container objects. In the case of a Computer
object, the GetSPVer function is used to query the service pack version, and the UpdateDB sub-
routine is used to write the information to the database. For a container or organizational unit
(OU), the script recursively calls the WorkWithObject subroutine, ensuring that every object,
no matter how deeply nested in the directory, is processed.

Sub WorkWithObject(oContainer)

 Dim oADObject

 For Each oADObject in oContainer

 Select Case oADObject.Class

 Case "computer"

 'oADObject represents a COMPUTER object;

 'get the service pack version and log

 'it to the database

Chapter 7: Database Scripting 205

 Dim strComputer

 strComputer = oADObject.cn

 WScript.Echo strComputer

 UpdateDB strComputer, GetSPVer(strComputer)

 Case "organizationalUnit" , "container"

 'oADObject is an OU or container...

 'go through its objects

 WorkWithObject(oADObject)

 End select

 Next

End Sub

The UpdateDB subroutine adds information to the database, or updates existing information.
It starts by opening the ADO connection to the ODBC DSN, which represents an Access data-
base.

Sub UpdateDB(strComputer, strSPVer)

 Dim objConn, objRS, strSQL

 Set objConn = CreateObject("ADODB.Connection")

 objConn.Open "ServicePackDB"

Next, the subroutine queries the database for the current computer name to see whether it
exists in the database. By checking the recordset’s EOF and BOF properties, the script can
determine if the queried computer is already in the database.

 'see if computer exists in database

 Set objRS = objConn.Execute("SELECT ComputerName FROM Computers " & _

 "WHERE ComputerName = '" & strComputer & "'")

 If objRS.EOF And objRS.BOF Then

If the computer isn’t found, an INSERT query is constructed in the strSQL variable.

 'computer not in database = add

 strSQL = "INSERT INTO Computers (ComputerName," & _

 "ServicePackVersion,LastCheck) VALUES(" & _

 "'" & strComputer & "'," & _

 "'" & strSPVer & "'," & _

 "#" & FormatDateTime(Now,2) & "#)"

If the computer is located in the database, an UPDATE query is constructed and stored in the
strSQL variable.

 Else

 'computer in database = update

 strSQL = "UPDATE Computers SET " & _

 "ServicePackVersion = '" & strSPVer & "', " & _

 "LastCheck = #" & FormatDateTime(Now,2) & "# " & _

 "WHERE ComputerName = '" & strComputer & "'"

 End If

206 Part III: Advanced Scripting Techniques, Tools, and Technologies

The query in strSQL is executed, either updating the computer or adding its information to
the database. Notice that both of the queries use the hash mark or pound sign (#) as a delim-
iter for the date column. If you were working with a SQL Server or an Excel database, you’d
change that to a single quotation mark.

 objRS.Close

 objConn.Execute strSQL

 objConn.Close

End Sub

Last is a simple GetSPVer function, which uses WMI to query the service pack from the com-
puter. This is where the most errors can occur. If the script can’t connect to the computer, for
example, it’ll return an empty string. (It shouldn’t crash, thanks to On Error Resume Next.)
Inadequate permissions, the Windows Firewall, or simple connectivity problems can result in
the target computer being unreachable.

Function GetSPVer(strComputer)

 On Error Resume Next

 Dim objWMIService

 Dim propValue

 Dim objItem

 Dim SWBemlocator

 Dim colItems

 Dim strSPVer

 Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

 Set objWMIService = SWBemlocator.ConnectServer(strComputer, _

 "\root\CIMV2")

 Set colItems = objWMIService.ExecQuery("Select * " & _

 "from Win32_OperatingSystem",,48)

 For Each objItem in colItems

 strSPVer= objItem.ServicePackMajorVersion & "." & _

 objItem.ServicePackMinorVersion

 Next

 GetSPVer = strSPVer

End Function

This useful tool can serve as a template for other homemade inventory tools.

Summary
Although database scripting might look complicated, it can actually be quite straightforward.
The flexibility you gain from being able to store complex data in Access, Excel, SQL Server,
and other databases is well worth the effort needed to get started in database scripting. In
this chapter, we gave you several examples of how to use various types of databases, and we
explained all the major ADO objects and techniques to supplement almost any Windows
administrative script. If problems occur with your database scripts, remember to test your
technique outside the context of a script. Try queries directly in the appropriate tool, for
example, or write a smaller test script that’s less complicated. That’ll help you spot the prob-
lem more quickly and get your script up and running as quickly as possible.

207

Chapter 8

Advanced ADSI and LDAP
Scripting

In this chapter:

Using the ADSI Scriptomatic . 207

Using Other ADSI Tools. 217

Writing Active Directory Queries . 226

Scripting the WinNT Provider . 230

Scripting Active Directory Security . 240

Summary . 243

ADSI is one of the most powerful—and sometimes most intimidating—tools that your scripts
can use. ADSI can interact with Active Directory, any LDAP directory, the Security Accounts
Manager, and other services. The capabilities of ADSI are broad, so we’ll introduce you to
some tools and techniques that make ADSI scripting a bit easier and more accessible.

If you’ve been scripting for a while, you’ve probably worked with Active Directory Services
Interface (ADSI). In our experience, however, most administrators are using only a fraction of
ADSI’s power and flexibility, and often they’re not using it at all because it looks so confusing
and complex. We’re going to introduce you to tools that make writing ADSI scripts easier, so
you can get the most out of ADSI.

Note We’re deliberately omitting material that’s considered basic, or that a scripter with
a bit of experience would have already encountered. However, if you’d like a refresher of
ADSI’s essentials, we suggest reading Don’s book, Managing Windows with VBScript and WMI
(Addison-Wesley, 2004), which includes several chapters on ADSI scripting.

Using the ADSI Scriptomatic
Microsoft’s Scripting Guys created an HTML application (HTA) to help make writing ADSI
scripts a bit easier. Similar to their popular Scriptomatic, which writes WMI scripts, the ADSI
Scriptomatic (also called the EZ-AD Scriptomatic) writes LDAP-based scripts that create, mod-
ify, and delete various types of Active Directory objects. As shown in Figure 8-1 on the next
page, the scripts produced by this tool are fairly short.

208 Part III: Advanced Scripting Techniques, Tools, and Technologies

Figure 8-1 Using the ADSI Scriptomatic to create a user account

Selecting a new task from the first drop-down list changes the script. However, notice in
Figure 8-2, which now shows the task as deleting a user account, that the script doesn’t
change very much.

Figure 8-2 Using the ADSI Scriptomatic to delete a user account

Chapter 8: Advanced ADSI and LDAP Scripting 209

Now change the type of object from user to computer, and you’ll see that the script still doesn’t
change very much. In fact, just the last couple of lines have a significant change, as shown in
Figure 8-3. The second line also changes, but that’s just a string variable defining the name of
the object to, in this case, delete.

Figure 8-3 Using the ADSI Scriptomatic to delete a computer account

The fact that much of the Scriptomatic’s code is boilerplate (it doesn’t change no matter what
you ask the tool to do) makes the code easier to reuse in your own scripts, which gives you a
head start on your ADSI scripts.

Note If you haven’t already done so, download the Scriptomatic at

http://www.microsoft.com/technet/scriptcenter/tools/admatic.mspx

(This link is included on the companion CD; click ADSI (Active Directory Service Interfaces)
Scriptomatic.)

Connecting to a Domain

The Scriptomatic uses a basic block of code to connect to the domain. Actually, the code con-
nects to a container, which can include the domain itself, an organizational unit (OU), or an
OU-like container such as the built-in Users container. The code that does the work is on the
next page.

210 Part III: Advanced Scripting Techniques, Tools, and Technologies

strContainer = ""

strName = "EzAdUser"

'***

'* Connect to a container *

'***

Set objRootDSE = GetObject("LDAP://rootDSE")

If strContainer = "" Then

 Set objContainer = GetObject("LDAP://" & _

 objRootDSE.Get("defaultNamingContext"))

Else

 Set objContainer = GetObject("LDAP://" & strContainer & "," & _

 objRootDSE.Get("defaultNamingContext"))

End If

The code attempts to connect to whatever is specified in the strContainer variable. By default,
the variable is an empty string, and you can see the If…Else…End If construct that connects to
the default naming context of the domain. However, if you populate the variable with some-
thing like ou=Sales or cn=Users, both of which specify a container, the script will connect to
that container to retrieve the default naming context.

Obviously, the strName variable should be populated with the name of the object you’re go-
ing to use. After the connection to the domain or container is made, there is a variable named
objContainer that represents that container. You use that container object’s methods to
create, delete, and modify objects.

Creating Objects

Creating an object involves directing the container that will store the object—typically an OU—
to create the object. The container has a Create method for this purpose, and you need only
specify the class of object you want to create and the canonical name (cn) that the new object
will use. The container will create the object and return a reference to it. For most Active Direc-
tory objects, you also have to specify a Security Accounts Manager (SAM) name, which is typ-
ically just the account name. You can set this name by using the Put method of the new object,
and then using its SetInfo method to save the information back to the directory. Here’s what a
user account looks like.

Set objUser = objContainer.Create("user", "cn=" & strName)

objUser.Put "sAMAccountName", strName

objUser.SetInfo

A computer account doesn’t need a SAM name.

Set objComputer = objContainer.Create("computer", "cn=" & strName)

objComputer.SetInfo

A contact object doesn’t need a SAM name either. In fact, notice that only the variable name—
objContact—and the class passed to the Create method are different. The variable name doesn’t

Chapter 8: Advanced ADSI and LDAP Scripting 211

even have to be different, but it does make the script clearer. Even an account for an organiza-
tional unit is almost identical.

Set objOrganizationalunit = objContainer.Create("organizationalUnit", _

 "ou=" & strName)

objOrganizationalunit.SetInfo

There are bigger differences in a group account. In addition to longer code at the end of the
script, constants are added to the beginning. The main code to create the group looks like
this.

Set objGroup = objContainer.Create("group", "cn=" & strName)

objGroup.Put "sAMAccountName", strName

objGroup.Put "groupType", ADS_GROUP_TYPE_GLOBAL_GROUP Or _

 ADS_GROUP_TYPE_SECURITY_ENABLED

objGroup.SetInfo

Not only must your script specify a SAM account name for the group, but you also have to
specify the type of group you’re creating. That’s done by setting the groupType property. The
constants at the beginning of the script provide your options.

ADS_GROUP_TYPE_GLOBAL_GROUP = &h2

ADS_GROUP_TYPE_LOCAL_GROUP = &h4

ADS_GROUP_TYPE_UNIVERSAL_GROUP = &h8

ADS_GROUP_TYPE_SECURITY_ENABLED = &h80000000

Select one of the first three options to make a distribution list (or group). To make a security
group, use the Boolean Or operator and append the SECURITY_ENABLED constant. The sam-
ple just shown, which is the default script produced by the Scriptomatic when creating a
group, would create a new global security group.

Retrieving Object Information

Using the Scriptomatic to read an object produces a fairly long script. This is one of the most
useful scripts you’ll from the tool because it displays so many properties for each of the object
classes it supports. The following is the portion of the user script that retrieves the object’s
information. It assumes the boilerplate that connects to the domain has already executed.

WScript.Echo VbCrLf & "** General Properties Page**"

WScript.Echo "** (Single-Valued Attributes) **"

strname = objItem.Get("name")

WScript.Echo "name: " & strname

strgivenName = objItem.Get("givenName")

WScript.Echo "givenName: " & strgivenName

strinitials = objItem.Get("initials")

WScript.Echo "initials: " & strinitials

strsn = objItem.Get("sn")

WScript.Echo "sn: " & strsn

strdisplayName = objItem.Get("displayName")

WScript.Echo "displayName: " & strdisplayName

212 Part III: Advanced Scripting Techniques, Tools, and Technologies

strdescription = objItem.Get("description")

WScript.Echo "description: " & strdescription

strphysicalDeliveryOfficeName = objItem.Get("physicalDeliveryOfficeName")

WScript.Echo "physicalDeliveryOfficeName: " & strphysicalDeliveryOfficeName

strtelephoneNumber = objItem.Get("telephoneNumber")

WScript.Echo "telephoneNumber: " & strtelephoneNumber

strmail = objItem.Get("mail")

WScript.Echo "mail: " & strmail

strwWWHomePage = objItem.Get("wWWHomePage")

WScript.Echo "wWWHomePage: " & strwWWHomePage

WScript.Echo VbCrLf & "** General Properties Page**"

WScript.Echo "** (MultiValued Attributes) **"

strotherTelephone = objItem.GetEx("otherTelephone")

WScript.Echo "otherTelephone:"

For Each Item in strotherTelephone

 WScript.Echo vbTab & Item

Next

strurl = objItem.GetEx("url")

WScript.Echo "url:"

For Each Item in strurl

 WScript.Echo vbTab & Item

Next

WScript.Echo VbCrLf & "** Address Properties Page**"

WScript.Echo "** (Single-Valued Attributes) **"

strstreetAddress = objItem.Get("streetAddress")

WScript.Echo "streetAddress: " & strstreetAddress

strl = objItem.Get("l")

WScript.Echo "l: " & strl

strst = objItem.Get("st")

WScript.Echo "st: " & strst

strpostalCode = objItem.Get("postalCode")

WScript.Echo "postalCode: " & strpostalCode

strc = objItem.Get("c")

WScript.Echo "c: " & strc

WScript.Echo VbCrLf & "** Address Properties Page**"

WScript.Echo "** (MultiValued Attributes) **"

strpostOfficeBox = objItem.GetEx("postOfficeBox")

WScript.Echo "postOfficeBox:"

For Each Item in strpostOfficeBox

 WScript.Echo vbTab & Item

Next

WScript.Echo VbCrLf & "** Account Properties Page**"

WScript.Echo "** (Single-Valued Attributes) **"

struserPrincipalName = objItem.Get("userPrincipalName")

WScript.Echo "userPrincipalName: " & struserPrincipalName

strdc = objItem.Get("dc")

WScript.Echo "dc: " & strdc

strsAMAccountName = objItem.Get("sAMAccountName")

WScript.Echo "sAMAccountName: " & strsAMAccountName

struserWorkstations = objItem.Get("userWorkstations")

WScript.Echo "userWorkstations: " & struserWorkstations

Chapter 8: Advanced ADSI and LDAP Scripting 213

WScript.Echo VbCrLf & "** Account Properties Page**"

WScript.Echo "** (The userAccountControl attribute) **"

Set objHash = CreateObject("Scripting.Dictionary")

objHash.Add "ADS_UF_SMARTCARD_REQUIRED", &h40000

objHash.Add "ADS_UF_TRUSTED_FOR_DELEGATION", &h80000

objHash.Add "ADS_UF_NOT_DELEGATED", &h100000

objHash.Add "ADS_UF_USE_DES_KEY_ONLY", &h200000

objHash.Add "ADS_UF_DONT_REQUIRE_PREAUTH", &h400000

intuserAccountControl = objItem.Get("userAccountControl")

For Each Key in objHash.Keys

 If objHash(Key) And intuserAccountControl Then

 WScript.Echo Key & " is enabled."

 Else

 WScript.Echo Key & " is disabled."

 End If

Next

If objItem.IsAccountLocked = True Then

 WScript.Echo "ADS_UF_LOCKOUT is enabled"

Else

 WScript.Echo "ADS_UF_LOCKOUT is disabled"

End If

If err.Number = -2147467259 OR _

 objItem.AccountExpirationDate = "1/1/1970" Then

 WScript.Echo "Account doesn't expire."

Else

 WScript.Echo "Account expires on: " & objItem.AccountExpirationDate

End If

WScript.Echo VbCrLf & "** Profile Properties Page**"

WScript.Echo "** (Single-Valued Attributes) **"

strprofilePath = objItem.Get("profilePath")

WScript.Echo "profilePath: " & strprofilePath

strscriptPath = objItem.Get("scriptPath")

WScript.Echo "scriptPath: " & strscriptPath

strhomeDirectory = objItem.Get("homeDirectory")

WScript.Echo "homeDirectory: " & strhomeDirectory

strhomeDrive = objItem.Get("homeDrive")

WScript.Echo "homeDrive: " & strhomeDrive

WScript.Echo VbCrLf & "** Telephone Properties Page**"

WScript.Echo "** (Single-Valued Attributes) **"

strhomePhone = objItem.Get("homePhone")

WScript.Echo "homePhone: " & strhomePhone

strpager = objItem.Get("pager")

WScript.Echo "pager: " & strpager

strmobile = objItem.Get("mobile")

WScript.Echo "mobile: " & strmobile

strfacsimileTelephoneNumber = objItem.Get("facsimileTelephoneNumber")

WScript.Echo "facsimileTelephoneNumber: " & strfacsimileTelephoneNumber

stripPhone = objItem.Get("ipPhone")

WScript.Echo "ipPhone: " & stripPhone

strinfo = objItem.Get("info")

WScript.Echo "info: " & strinfo

214 Part III: Advanced Scripting Techniques, Tools, and Technologies

WScript.Echo VbCrLf & "** Telephone Properties Page**"

WScript.Echo "** (MultiValued Attributes) **"

strotherHomePhone = objItem.GetEx("otherHomePhone")

WScript.Echo "otherHomePhone:"

For Each Item in strotherHomePhone

 WScript.Echo vbTab & Item

Next

strotherPager = objItem.GetEx("otherPager")

WScript.Echo "otherPager:"

For Each Item in strotherPager

 WScript.Echo vbTab & Item

Next

strotherMobile = objItem.GetEx("otherMobile")

WScript.Echo "otherMobile:"

For Each Item in strotherMobile

 WScript.Echo vbTab & Item

Next

strotherFacsimileTelephoneNumber = objItem.GetEx("otherFacsimileTelephoneNumber")

WScript.Echo "otherFacsimileTelephoneNumber:"

For Each Item in strotherFacsimileTelephoneNumber

 WScript.Echo vbTab & Item

Next

strotherIpPhone = objItem.GetEx("otherIpPhone")

WScript.Echo "otherIpPhone:"

For Each Item in strotherIpPhone

 WScript.Echo vbTab & Item

Next

WScript.Echo VbCrLf & "** Organization Properties Page**"

WScript.Echo "** (Single-Valued Attributes) **"

strtitle = objItem.Get("title")

WScript.Echo "title: " & strtitle

strdepartment = objItem.Get("department")

WScript.Echo "department: " & strdepartment

strcompany = objItem.Get("company")

WScript.Echo "company: " & strcompany

strmanager = objItem.Get("manager")

WScript.Echo "manager: " & strmanager

WScript.Echo VbCrLf & "** Organization Properties Page**"

WScript.Echo "** (MultiValued Attributes) **"

strdirectReports = objItem.GetEx("directReports")

WScript.Echo "directReports:"

For Each Item in strdirectReports

 WScript.Echo vbTab & Item

Next

WScript.Echo VbCrLf & "** Environment Properties Page**"

WScript.Echo "** (The ADSI Extension for Terminal Services interface) **"

WScript.Echo "TerminalServicesInitialProgram: " & _

 objItem.TerminalServicesInitialProgram

WScript.Echo "TerminalServicesWorkDirectory: " & _

 objItem.TerminalServicesWorkDirectory

Chapter 8: Advanced ADSI and LDAP Scripting 215

WScript.Echo "ConnectClientDrivesAtLogon: " & _

 objItem.ConnectClientDrivesAtLogon

WScript.Echo "ConnectClientPrintersAtLogon: " & _

 objItem.ConnectClientPrintersAtLogon

WScript.Echo "DefaultToMainPrinter: " & _

 objItem.DefaultToMainPrinter

WScript.Echo VbCrLf & "** Sessions Properties Page**"

WScript.Echo "** (The ADSI Extension for Terminal Services interface) **"

WScript.Echo "MaxDisconnectionTime: " & _

 objItem.MaxDisconnectionTime

WScript.Echo "MaxConnectionTime: " & _

 objItem.MaxConnectionTime

WScript.Echo "MaxIdleTime: " & _

 objItem.MaxIdleTime

WScript.Echo "BrokenConnectionAction: " & _

 objItem.BrokenConnectionAction

WScript.Echo "ReconnectionAction: " & _

 objItem.ReconnectionAction

WScript.Echo VbCrLf & "** Remote Control Properties Page**"

WScript.Echo "** (The ADSI Extension for Terminal Services interface) **"

WScript.Echo "EnableRemoteControl: " & _

 objItem.EnableRemoteControl

Select Case objItem.EnableRemoteControl

 Case 0

 WScript.Echo "Remote Control disabled"

 Case 1

 WScript.Echo "Remote Control enabled"

 WScript.Echo "User permission required"

 WScript.Echo "Interact with the session"

 Case 2

 WScript.Echo "Remote Control enabled"

 WScript.Echo "User permission not required"

 WScript.Echo "Interact with the session"

 Case 3

 WScript.Echo "Remote Control enabled"

 WScript.Echo "User permission required"

 WScript.Echo "View the session"

 Case 4

 WScript.Echo "Remote Control enabled"

 WScript.Echo "User permission not required"

 WScript.Echo "View the session"

End Select

WScript.Echo VbCrLf & "** Terminal Services Profile Properties Page**"

WScript.Echo "** (The ADSI Extension for Terminal Services interface) **"

WScript.Echo "TerminalServicesProfilePath: " & _

 objItem.TerminalServicesProfilePath

WScript.Echo "TerminalServicesHomeDirectory: " & _

 objItem.TerminalServicesHomeDirectory

WScript.Echo "TerminalServicesHomeDrive: " & _

 objItem.TerminalServicesHomeDrive

216 Part III: Advanced Scripting Techniques, Tools, and Technologies

WScript.Echo "AllowLogon: " & _

 objItem.AllowLogon

WScript.Echo VbCrLf & "** COM+ Properties Page**"

WScript.Echo "** (Single-Valued Attributes) **"

WScript.Echo "msCOM-UserPartitionSetLink: "

WScript.Echo " " & objItem.Get("msCOM-UserPartitionSetLink")

WScript.Echo VbCrLf & "** Member Of Properties Page**"

WScript.Echo "** (Single-Valued Attributes) **"

strprimaryGroupID = objItem.Get("primaryGroupID")

WScript.Echo "primaryGroupID: " & strprimaryGroupID

WScript.Echo VbCrLf & "** Member Of Properties Page**"

WScript.Echo "** (MultiValued Attributes) **"

strmemberOf = objItem.GetEx("memberOf")

WScript.Echo "memberOf:"

For Each Item in strmemberOf

 WScript.Echo vbTab & Item

Next

WScript.Echo VbCrLf & "** Object Properties Page**"

WScript.Echo "** (Single-Valued Attributes) **"

strwhenCreated = objItem.Get("whenCreated")

WScript.Echo "whenCreated: " & strwhenCreated

strwhenChanged = objItem.Get("whenChanged")

WScript.Echo "whenChanged: " & strwhenChanged

objItem.GetInfoEx Array("canonicalName"), 0

WScript.Echo VbCrLf & "** Object Properties Page**"

WScript.Echo "** (MultiValued Attributes) **"

strcanonicalName = objItem.GetEx("canonicalName")

WScript.Echo "canonicalName:"

For Each Item in strcanonicalName

 WScript.Echo vbTab & Item

Next

As you can see, there’s an incredible amount of useful information here. You can see nearly
every major property of the object, as well as how to retrieve information from each one.
Examining this code is a great way to explore the properties that are available and learn what
they do and what values they contain for a typical user in your domain. In fact, you can copy
and paste enough code out of the Scriptomatic to create a script that automates the creation of
new user accounts. Add some database code, for example, and you could retrieve new user
information from an Access database.

Tip To change any of these properties, use the Put or PutEx methods instead of Get or GetEx.

Chapter 8: Advanced ADSI and LDAP Scripting 217

Using Other ADSI Tools
Exploring Active Directory is a great way to expand your scripting repertoire. When you
encounter a property that you aren’t familiar with, you can examine its values by looking at
several existing users. You can also enter the property name into a search engine, and you’ll
often find examples of how it’s used. (Add the term VBScript to your search for more script-
specific examples.) In the next few sections, we’ll look at a few tools that are particularly use-
ful for exploring Active Directory and that make ADSI scripting easier.

Using the ADSI Software Development Kit

The ADSI Software Development Kit (SDK) is a free download from Microsoft’s Web site. The
SDK is used mainly by professional software developers, but it includes three tools that we’ve
found useful for writing ADSI scripts: ADSVW, ADSCmd, and ADSIDump.

On the CD We’ve included a link to the SDK on the CD that accompanies this book. You can
also link to the SDK from the Microsoft TechNet Script Center at http://www.microsoft.com
/technet/scriptcenter.

ADSVW

The Active Directory Browser (ADSVW) is a great tool for exploring Active Directory. Unlike
the Scriptomatic, which produces fairly generic scripts, you use ADSVW to browse your
domain itself, meaning you can view sample data from objects in your domain to see what’s
in use. When you first launch the tool, select ObjectViewer, as shown in Figure 8-4.

Figure 8-4 Launching ADSVW

218 Part III: Advanced Scripting Techniques, Tools, and Technologies

Next, you’ll be prompted to connect to a specific object, as shown in Figure 8-5. We usually
prefer to connect to the root of the domain. That way, the entire domain is available for brows-
ing. To do so, enter LDAP: in the Enter ADs Path box. Be sure to clear the Use OpenObject
check box to connect to your client computer’s default domain.

Figure 8-5 Using ADSVW to connect to your default domain

Figure 8-6 shows the browser connected to a domain. Notice that containers such as OUs
aren’t expandable until you click them in the tree view in the left panel. In Figure 8-6, a user
object has been selected. In the Properties drop-down list in the right panel, we selected the
nTSecurityDescriptor property. The browser recognizes that this is a special property and dis-
plays the security descriptor specifics. Also notice that two buttons—SetPassword and Change-
Password—are displayed, offering functionality specific to this type of object.

If you select a computer from the domain, the view changes. In Figure 8-7, we selected a sim-
pler property, so the right pane displays general information about the object. Because the
object in question is a computer, the password buttons are replaced with a Shutdown button.

The ADSVW graphical interface makes it easier to explore the objects in your domain and see
their properties from the same viewpoint that a developer—or a scripter such as yourself—
would use. You’ll see property names, their values, and so forth, and you can even modify the
properties. In fact, ADSVW can be a great development tool because you can use it to verify
your property names, object classes, and even the values you place into properties, all before
you start writing your script. By testing these things first, your script will be much less likely
to run into trouble.

Chapter 8: Advanced ADSI and LDAP Scripting 219

Figure 8-6 Working with users in ADSVW

Figure 8-7 Working with computers in ADSVW

220 Part III: Advanced Scripting Techniques, Tools, and Technologies

ADSCmd

ADSCmd is, as its name implies, a command-line tool. You can use it to list objects in a
domain, including objects that aren’t usually available to graphical tools. ADSCmd works
with any ADSI provider. Remember, ADSI stands for Active Directory Services Interface, but
that doesn’t mean it’s designed only for Active Directory. In fact, rather than thinking of it as
Active Directory Services Interface, think of it as Active Directory Services Interface, meaning it’s
a generic directory services interface. (ADSI existed before Active Directory itself.) Here’s an
example of running ADSCmd against a laptop computer using the WinNT provider.

adscmd list WinNT://Don-laptop

 __vmware_user__(User)

 Administrator(User)

 ASPNET(User)

 DonJones(User)

 Guest(User)

 HelpAssistant(User)

 IUSR_DON-LAPTOP(User)

 IWAM_DON-LAPTOP(User)

 SQLDebugger(User)

 SUPPORT_388945a0(User)

 testuser(User)

 VUSR_DON-LAPTOP(User)

 WADM_DON-LAPTOP(User)

 Administrators(Group)

 Backup Operators(Group)

 Guests(Group)

 Network Configuration Operators(Group)

 Power Users(Group)

 Remote Desktop Users(Group)

 Users(Group)

 Debugger Users(Group)

 ESR_Administrator(Group)

 ESR_Reporter(Group)

 HelpServicesGroup(Group)

 VS Developers(Group)

 __vmware__(Group)

 ACS(Service)

 Adobe LM Service(Service)

 AdobeVersionCue(Service)

 Alerter(Service)

 ALG(Service)

 AppMgmt(Service)

 aspnet_admin(Service)

 aspnet_state(Service)

 Ati HotKey Poller(Service)

 AudioSrv(Service)

 BITS(Service)

 Browser(Service)

 BthServ(Service)

 CeEPwrSvc(Service)

Chapter 8: Advanced ADSI and LDAP Scripting 221

 CFSvcs(Service)

 CiSvc(Service)

 ClipSrv(Service)

 COMSysApp(Service)

 CryptSvc(Service)

 DcomLaunch(Service)

 Dhcp(Service)

 ...

 W3SVC(Service)

 WebClient(Service)

 winmgmt(Service)

 WmcCds(Service)

 WmcCdsLs(Service)

 WMDM PMSP Service(Service)

 WmdmPmSN(Service)

 Wmi(Service)

 WmiApSrv(Service)

 wscsvc(Service)

 wuauserv(Service)

 WZCSVC(Service)

 xmlprov(Service)

Total Number of Objects enumerated is 143

Note We snipped some lines out of the middle of this listing to keep it short, but 143 total
objects were listed when we ran it.

You’ll notice that in addition to users and groups, the WinNT provider can connect to ser-
vices. (The LDAP provider, when used with Active Directory, can’t connect to services.) You
can start and stop services by using the WinNT provider to connect to these service objects
(which we’ll demonstrate later in this chapter). Here’s an example of using ADSCmd with the
LDAP provider to connect to a domain’s root.

adscmd list LDAP://company.pri

 CN=Builtin(builtinDomain)

 CN=Computers(container)

 OU=Depts(organizationalUnit)

 OU=Domain Controllers(organizationalUnit)

 OU=Finance(organizationalUnit)

 CN=ForeignSecurityPrincipals(container)

 OU=Groups(organizationalUnit)

 CN=Infrastructure(infrastructureUpdate)

 CN=LostAndFound(lostAndFound)

 OU=MyOU(organizationalUnit)

 CN=NTDS Quotas(msDS-QuotaContainer)

 CN=Program Data(container)

 CN=System(container)

 CN=Users(container)

Total Number of Objects enumerated is 14

222 Part III: Advanced Scripting Techniques, Tools, and Technologies

Notice that only the objects in the root—which is what we queried—are listed. If you wanted to
see what was in a specific OU, such as MyOU, you’d do this.

adscmd list LDAP://dc/OU=MyOU,DC=company,DC=pri

 OU=AnotherOU(organizationalUnit)

 CN=Computer(computer)

 CN=Contact(contact)

 CN=Group(group)

 CN=InetOrgPerson No idea(inetOrgPerson)

 CN=Share(volume)

 CN=User(user)

Total Number of Objects enumerated is 7

ADSCmd is a useful tool for quickly determining what is in a particular container. It’s also
useful for testing LDAP queries that are intended to retrieve a container. ADSCmd can also
retrieve other objects. For example, the listing just shown indicates that MyOU contains a user
account named User. Here’s how you’d retrieve that.

adscmd dump LDAP://company.pri/CN=User,OU=MyOU,dc=company,

 DC=pri

cn : User

instanceType : 4

nTSecurityDescriptor : Data type is 9

objectCategory : CN=Person,CN=Schema,CN=Configuration,DC=compan

y,DC=pri

objectClass : top, person, organizationalPerson, user

objectSid : Data type is 8209

sAMAccountName : User

The dump keyword shows the properties of the object, rather than its child objects, because in
this case, the object, a user, doesn’t have child objects. This is a great way to test an LDAP
query before adding it to your script, or to test LDAP queries generated by your script as part
of a troubleshooting process.

ADSIDump

This powerful command-line utility lists every object, and most of their attributes, from the
domain. The information is output to a file for easier review. Here’s a portion of a file gener-
ated by ADSIDump. (Note that the output shown onscreen is less complete that what’s sent to
the output file you specify.)

Chapter 8: Advanced ADSI and LDAP Scripting 223

===

*** DC=company ***

 ROOT OBJECT

 Full ADs path: "LDAP://DC=company,dc=pri"

 Class: domainDNS

 Schema: LDAP://schema/domainDNS

 Attributes -------------------

 dc : (BSTR) "company"

 instanceType : (INT) 5

 nTSecurityDescriptor : (Unknown variant type)

 objectCategory : (BSTR) "CN=Domain-DNS,CN=Schema,CN=Configuration,DC=company,DC=pri"

 objectClass : (ARRAY) ["top" "domain" "domainDNS"]

 auditingPolicy : (Unknown variant type)

 creationTime : (Unknown variant type)

 distinguishedName : (BSTR) "DC=company,DC=pri"

 forceLogoff : (Unknown variant type)

 fSMORoleOwner : (BSTR) "CN=NTDS Settings,CN=DC,CN=Servers,CN=Default-First-Site-

Name,CN=Sites,CN=Configuration,DC=company,DC=pri"

 gPLink : (BSTR) "[LDAP://CN={31B2F340-016D-11D2-945F-

00C04FB984F9},CN=Policies,CN=System,DC=company,DC=pri;0]"

 isCriticalSystemObject : (BOOL) TRUE

 lockoutDuration : (Unknown variant type)

 lockOutObservationWindow : (Unknown variant type)

 lockoutThreshold : (INT) 0

 masteredBy : (BSTR) "CN=NTDS Settings,CN=DC,CN=Servers,CN=Default-First-Site-

Name,CN=Sites,CN=Configuration,DC=company,DC=pri"

 maxPwdAge : (Unknown variant type)

 minPwdAge : (Unknown variant type)

 minPwdLength : (INT) 7

 modifiedCount : (Unknown variant type)

 modifiedCountAtLastProm : (Unknown variant type)

 ms-DS-MachineAccountQuota : (INT) 10

 msDS-AllUsersTrustQuota : (INT) 1000

 msDS-Behavior-Version : (INT) 0

 msDs-masteredBy : (BSTR) "CN=NTDS Settings,CN=DC,CN=Servers,CN=Default-First-Site-

Name,CN=Sites,CN=Configuration,DC=company,DC=pri"

 msDS-PerUserTrustQuota : (INT) 1

 msDS-PerUserTrustTombstonesQuota : (INT) 10

 name : (BSTR) "company"

 nextRid : (INT) 1003

 nTMixedDomain : (INT) 1

 objectGUID : (Unknown variant type)

 objectSid : (Unknown variant type)

 pwdHistoryLength : (INT) 24

 pwdProperties : (INT) 1

 rIDManagerReference : (BSTR) "CN=RID Manager$,CN=System,DC=company,DC=pri"

 serverState : (INT) 1

 subRefs : (ARRAY) ["DC=ForestDnsZones,DC=company,DC=pri"

"DC=DomainDnsZones,DC=company,DC=pri" "CN=Configuration,DC=company,DC=pri"]

 systemFlags : (INT) -1946157056

 uASCompat : (INT) 1

 uSNChanged : (Unknown variant type)

 uSNCreated : (Unknown variant type)

 wellKnownObjects : (ARRAY) []

 whenChanged : (Unknown variant type)

 whenCreated : (Unknown variant type)

224 Part III: Advanced Scripting Techniques, Tools, and Technologies

That’s just the domain itself; each object within the domain is broken down in a similar fash-
ion. (If you’re running ADSIDump in a large domain, be prepared to wait a while for the file to
finish!). Here’s another section of the output, this time for the built-in container.

*** CN=Builtin ***

 Child of DC=company

 Full ADs path: "LDAP://CN=Builtin,DC=company,dc=pri"

 Class: builtinDomain

 Schema: LDAP://schema/builtinDomain

 Attributes -------------------

 instanceType : (INT) 4

 nTSecurityDescriptor : (Unknown variant type)

 objectCategory : (BSTR) "CN=Builtin-Domain,CN=Schema,CN=Configuration,DC=company,DC=pri"

 objectClass : (ARRAY) ["top" "builtinDomain"]

 cn : (BSTR) "Builtin"

 creationTime : (Unknown variant type)

 distinguishedName : (BSTR) "CN=Builtin,DC=company,DC=pri"

 forceLogoff : (Unknown variant type)

 isCriticalSystemObject : (BOOL) TRUE

 lockoutDuration : (Unknown variant type)

 lockOutObservationWindow : (Unknown variant type)

 lockoutThreshold : (INT) 0

 maxPwdAge : (Unknown variant type)

 minPwdAge : (Unknown variant type)

 minPwdLength : (INT) 0

 modifiedCount : (Unknown variant type)

 modifiedCountAtLastProm : (Unknown variant type)

 name : (BSTR) "Builtin"

 nextRid : (INT) 1000

 objectGUID : (Unknown variant type)

 objectSid : (Unknown variant type)

 pwdHistoryLength : (INT) 0

 pwdProperties : (INT) 0

 serverState : (INT) 1

 showInAdvancedViewOnly : (BOOL) FALSE

 systemFlags : (INT) -1946157056

 uASCompat : (INT) 1

 uSNChanged : (Unknown variant type)

 uSNCreated : (Unknown variant type)

 whenChanged : (Unknown variant type)

 whenCreated : (Unknown variant type)

You can use this technique to get a reference of every object in your domain, along with those
objects’ key attributes. This output file can be an invaluable reference as you write scripts,
because it contains property names, sample data straight from your actual domain, and so
forth. Notice that it also lists the full Active Directory path for every object, which can help you
fine-tune your LDAP queries. Here’s the built-in Account Operators group.

*** CN=Account Operators ***

 Child of CN=Builtin

 Full ADs path: "LDAP://CN=Account Operators,CN=Builtin,DC=company,dc=pri"

 Class: group

 Schema: LDAP://schema/group

Chapter 8: Advanced ADSI and LDAP Scripting 225

 Attributes -------------------

 cn : (BSTR) "Account Operators"

 groupType : (INT) -2147483643

 instanceType : (INT) 4

 nTSecurityDescriptor : (Unknown variant type)

 objectCategory : (BSTR) "CN=Group,CN=Schema,CN=Configuration,DC=company,DC=pri"

 objectClass : (ARRAY) ["top" "group"]

 objectSid : (Unknown variant type)

 sAMAccountName : (BSTR) "Account Operators"

 adminCount : (INT) 1

 description : (BSTR) "Members can administer domain user and group accounts"

 distinguishedName : (BSTR) "CN=Account Operators,CN=Builtin,DC=company,DC=pri"

 isCriticalSystemObject : (BOOL) TRUE

 name : (BSTR) "Account Operators"

 objectGUID : (Unknown variant type)

 sAMAccountType : (INT) 536870912

 systemFlags : (INT) -1946157056

 uSNChanged : (Unknown variant type)

 uSNCreated : (Unknown variant type)

 whenChanged : (Unknown variant type)

 whenCreated : (Unknown variant type)

Included in the full Active Directory path is the LDAP query you need to execute to connect to
this group. If LDAP queries seem complex or intimidating, just borrow them from the ADSI-
Dump output file, rather than trying to write them yourself.

Using the PrimalScript Professional ADSI Wizard

Most commercial script editors include ADSI wizards similar to the ADSI Scriptomatic. Primal-
Script Professional (http://www.primalscript.com) takes a different approach, however, and we
like how easy it makes ADSI scripting. You start by selecting the types of Active Directory
objects you want to script, as shown in Figure 8-8. Notice that for each object type, the wizard
can produce sample code showing how to add an item of that type, delete an item, or modify
an item.

Figure 8-8 Using the PrimalScript Professional ADSI Wizard

226 Part III: Advanced Scripting Techniques, Tools, and Technologies

The wizard generates a series of new classes that represent the object types you selected.
These classes are supported by PrimalScript’s PrimalSense feature (which displays menus that
list the members of a class, a feature generically referred to as code hinting), as shown in Figure
8-9. We think this is a great feature because it helps you script without having to refer to doc-
umentation. Rather than working with plan object variables, you work with objects that
behave like users, groups, and so forth, and that have all the properties and methods you’d
expect.

Figure 8-9 Using code hinting with the PrimalScript ADSI Wizard

Adding a new user is straightforward. You connect to ADSI with a single line of code, and use
one more line to create a new user. Here’s the code we wrote, based on the classes added by
the ADSI Wizard.

Dim objADSI, objADSIUser

Set objADSI = New ADSIConnection

Set objADSIUser = New ADSIUser

objADSI.CreateUser("cn=Users","JHicks")

That definitely makes it easier to write ADSI scripts!

Writing Active Directory Queries
Writing basic LDAP queries like this one is easy.

LDAP://CN=Account Operators,CN=Builtin,DC=company,dc=pri

But this isn’t always the most efficient way to work with LDAP, and sometimes—especially if
you’re querying a large number of objects—simple queries won’t do what you need them to. In
the next two sections, we’ll explore some advanced techniques for writing LDAP queries.

Chapter 8: Advanced ADSI and LDAP Scripting 227

Using Search Filters

The LDAP query language includes filtering capabilities that can help refine your searches. For
example, you can add filters that restrict the object classes or categories that a search returns.

(objectCategory=person)

This example only returns objects whose objectCategory property is person. Using it in a com-
plete LDAP query might look like this.

<LDAP://dc=company,dc=pri>;(objectClass=User)

That would return all user objects from the company.pri domain. Setting search filters in this
fashion can help make your result sets smaller, easier to work with, and more specific.

How you use these filters in VBScript depends on how you’re connecting to ADSI. For exam-
ple, here’s an LDAP connection that retrieves all objects and then filters them so that only user
objects are accessible.

Set colUsers = GetObject ("LDAP://CN=Users,DC=company,DC=pri")

colUsers.Filter = Array("user")

A downside to this technique is that more data is being transmitted to the client than neces-
sary, because the client is adding the filter. In the next chapter, we’ll use ActiveX Data Objects
(ADO) to connect to Active Directory, where full LDAP filtering and searching is an option for
more efficient queries.

Using Data Return Limits

One tricky part about ADSI is that it’s designed to minimize negative impact in terms of per-
formance, which can sometimes cause it to produce results that aren’t what you expect. For
example, if you try to execute a query that would return a million objects, ADSI will limit you
to about 1,000 objects, so you won’t overtax the computer you’re querying. Getting around
this limit can be annoying and confusing if you don’t know that the limit is in effect.

The best way to work with the limit is to access ADSI through its ActiveX Data Object (ADO)
provider (a topic we cover in detail in the next chapter). For example, suppose you want to
find the distinguished name for a user account, but you only know its NetBIOS account name.
You first create an ADO Connection object and a Command object.

 Dim objConn,objCmd,objRS

 Set objConn=Createobject("ADODB.Connection")

 Set objCmd=Createobject("ADODB.Command")

Next, set a string variable to NotFound. This will be the default value returned in case the user
account you specified isn’t located.

 strGetDN="NotFound"

228 Part III: Advanced Scripting Techniques, Tools, and Technologies

Use an LDAP query to connect to the domain root and retrieve the default naming context for
the domain.

 Set objRoot=Getobject("LDAP://RootDSE")

 Set objDomain=Getobject("LDAP://"& objRoot.get("DefaultNamingContext"))

Now comes the query. Select the sAMAccountName, cn, and distinguishedName properties from
the domain, specifying the object category to be person, the object’s class to be user, and the
sAMAccountName to be contained in the variable samAccount (which must be set to a value).

 strQuery="Select sAMAccountname,cn,distinguishedname from '" & _

 objDomain.AdsPath & "' Where objectCategory='person' " & _

 "AND " & "objectclass='user'" & _

 " AND sAMAccountName='" & samAccount & "'"

Global catalogs (GCs) have all the information you need, so you’ll connect to one. This query
gets connects to the GCs, and the loop runs through them. At the end, objGC represents a GC
server.

 set objCatalog=Getobject("GC:")

 for each objItem In objCatalog

 Set objGC=objItem

 Next

Now you can set up the connection to Active Directory through ADO.

 objConn.Provider="ADSDSOobject"

 objConn.Open "Active Directory Provider"

After the connection is open, you assign it to a Command object. Notice that the Command
object’s page size property is set to 100. That’s the maximum number of records we’ll get back
at a time. We set the CommandText property to our query, which is in the strQuery variable.

 objCmd.ActiveConnection=objConn

 objCmd.Properties("Page Size") = 100

 objCmd.Properties("asynchronous")=True

 objCmd.Properties("Timeout") =30

 objCmd.Properties("Cache Results") = False

 objCmd.CommandText=strQuery

Now execute the Command object and specify that its results of the query are placed in an
ADO Recordset object—into the variable objRS.

 set objRS=objCmd.Execute

Run through the recordset until you reach its end. As we pass 100 records, ADO will automat-
ically requery for the next 100 records.

 do while not objRS.EOF

 strGetDN=objRS.Fields("distinguishedname")

 objRS.movenext

 Loop

Chapter 8: Advanced ADSI and LDAP Scripting 229

When finished, close both the recordset and the connection.

 objRS.Close

 objConn.Close

That’s the easiest way to avoid the record query limit. Listing 8-1 is the complete script, writ-
ten as a function so that it can be added into your scripts.

Listing 8-1 Avoid the Record Query Limit
Function strGetDN(samAccount)

 'Given NT4 account name, find the distinguished name for the user account

 On Error Resume Next

 Dim objConn,objCmd,objRS

 Set objConn=Createobject("ADODB.Connection")

 Set objCmd=Createobject("ADODB.Command")

 strGetDN="NotFound"

 Set objRoot=Getobject("LDAP://RootDSE")

 Set objDomain=Getobject("LDAP://"& objRoot.get("DefaultNamingContext"))

 strQuery="Select sAMAccountname,cn,distinguishedname from '" & _

 objDomain.AdsPath & "' Where objectCategory='person' AND " & _

 "objectclass='user'" & _

 " AND sAMAccountName='" & samAccount & "'"

 set objCatalog=Getobject("GC:")

 for each objItem In objCatalog

 Set objGC=objItem

 Next

 objConn.Provider="ADSDSOobject"

 objConn.Open "Active Directory Provider"

 objCmd.ActiveConnection=objConn

 objCmd.Properties("Page Size") = 100

 objCmd.Properties("asynchronous")=True

 objCmd.Properties("Timeout") =30

 objCmd.Properties("Cache Results") = False

 objCmd.CommandText=strQuery

 set objRS=objCmd.Execute

 do while not objRS.EOF

 strGetDN=objRS.Fields("distinguishedname")

 objRS.movenext

 Loop

 objRS.Close

 objConn.Close

 set objConn=Nothing

 set objCmd=Nothing

 set objRoot=Nothing

230 Part III: Advanced Scripting Techniques, Tools, and Technologies

 set objCatalog=Nothing

 set objRS=Nothing

End Function

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

Scripting the WinNT Provider
The WinNT provider is too often overlooked by administrators who don’t realize that ADSI is
capable of working with more than just Active Directory, or who believe that the WinNT pro-
vider is useful only with Microsoft Windows NT. Nothing could be further from the truth.

Remember that the WinNT provider can connect to services on a computer. One such service
is the Server service, which is responsible for handling all shared folders and the files within
them. Say, for example, that you wrote this short piece of code that connects to a server’s
Server service.

sServerName = InputBox ("Server name to check")

sFilename= InputBox ("Full path and filename of the file on the" & _

 "server (use the local path as if you were " & _

 "at the server console)")

' bind to the server's file service

set oFileService = GetObject("WinNT://" & sServerName & _

 "/lanmanserver,fileservice")

The code returns a server name and a filename. There is also a reference to that server’s lan-
manserver service, which is just another name for the Server service. This service maintains a
Resources collection, and each item in that collection represents an open resource—a file, for
example. The following code runs through each resource and checks whether its path
matches the filename you specified.

bFoundNone = True

For Each oResource In oFileService.Resources

 If oResource.Path = sFilename Then

 bFoundNone = False

 WScript.Echo oResource.Path & " is opened by " & oResource.User

 End If

Next

If it matches, the name of the user who has that file open is displayed. Listing 8-2 shows the
entire script, including comments to help you follow along.

Chapter 8: Advanced ADSI and LDAP Scripting 231

Listing 8-2 Find Open Files
' first, get the server name we want to work with

sServerName = InputBox ("Server name to check")

' get the local path of the file to check

sFilename= InputBox ("Full path and filename of the file on the" & _

 " server (use the local path as if you were " & _

 "at the server console)")

' bind to the server's file service

set oFileService = GetObject("WinNT://" & sServerName & _

 "/lanmanserver,fileservice")

' scan through the open resources until we

' locate the file we want

bFoundNone = True

' use a FOR...EACH loop to walk through the

' open resources

For Each oResource In oFileService.Resources

 does this resource match the one we're looking for?

 If oResource.Path = sFilename Then

 ' we found the file - show who's got it

 bFoundNone = False

 WScript.Echo oResource.Path & " is opened by " & oResource.User

 End If

Next

' if we didn't find the file open, display a msg

If bFoundNone = True Then

 WScript.Echo "Didn't find that file opened by anyone."

End If

Note that this script won’t run in all circumstances. We tested it on Microsoft Windows XP,
but it might not work on file servers. Nonetheless, it’s a useful illustration of how the WinNT
provider remains relevant even though Windows NT is largely a thing of the past.

Listing 8-3, which starts on the next page, is a Windows Script File (WSF) designed to be run
as a command-line tool. It’ll change any local account password (such as the local Administra-
tor account) on a batch of computers. It works on a list of computers from a text file, or you
can target computer accounts in your domain or an OU.

Note This script is excerpted from Don’s book Microsoft Windows Administrator’s Automa-
tion Toolkit (Microsoft Press, 2005), which includes over eighty scripts designed to automate
Windows administration. The listing here is just the code portion of the script. On the CD that
accompanies this book, you’ll find the complete, XML-formatted script in WSF format.

232 Part III: Advanced Scripting Techniques, Tools, and Technologies

Listing 8-3 Change Local Password
<?xml version="1.0" ?>

<package>

 <job id="ChangeLocalPassword" prompt="no">

 <?job error="false" debug="false" ?>

 <runtime>

 <description>

Changes a local account password on one or more computers.

Use only one of the following:

 /list:filename : text file containing one computer name per line

 /container:ouname : name of an OU containing computer accounts

 /computer:name : run command against single specified computer

Other arguments are optional.

 </description>

 <named helpstring="Text file to pull computer names from"

name="list" required="false" type="string"/>

 <named helpstring="OU to pull computer names from" name="container"

required="false" type="string"/>

 <named helpstring="Run command against single specified computer"

name="computer" required="false" type="string"/>

 <named helpstring="Display detailed messages" name="verbose"

required="false" type="simple"/>

 <named helpstring="Use with /container to include sub-OUs"

name="recurse" required="false" type="simple"/>

 <named helpstring="File to log names which can't be reached"

name="log" required="false" type="string"/>

 <named helpstring="Reduce timeout wait by pinging before attempting"

name="ping" required="false" type="simple"/>

 <named helpstring="User account to change" name="user"

required="true" type="string"/>

 <named helpstring="New password for user account" name="password"

required="true" type="string"/>

 </runtime>

 <object id="fso" progid="Scripting.FileSystemObject"/>

 <script id="MultiComputer" language="VBScript">

<![CDATA[

'--

' Change local password

'--

' supported: 2003,XP,2000,NT4

'make sure we're running from CScript, not WScript

If LCase(Right(WScript.FullName,11)) <> "cscript.exe" Then

 If MsgBox("This script is designed to work with CScript, but you are running it

under WScript. " & _

 "This script may produce a large number of dialog boxes when running under

WScript, which you may " & _

 "find to be inefficient. Do you want to continue anyway?",4+256+32,"Script

host warning") = 7 Then

 WScript.Echo "Tip: Run ""Cscript //h:cscript"" from a command-line to

make CScript the default scripting host."

 WScript.Quit

Chapter 8: Advanced ADSI and LDAP Scripting 233

 End If

End If

'count arguments

Dim iArgs

If WScript.Arguments.Named.exists("computer") Then iArgs = iArgs + 1

If WScript.Arguments.Named.exists("container") Then iArgs = iArgs + 1

If WScript.Arguments.Named.exists("list") Then iArgs = iArgs + 1

If iArgs <> 1 Then

 WScript.Echo "Must specify either /computer, /container, or /list arguments."

 WScript.Echo "May not specify more than one of these arguments."

 WScript.Echo "Run command again with /? argument for assistance."

 WScript.Quit

End If

'if ping requested, make sure we're on XP or later

Dim bPingAvailable, oLocalWMI, cWindows, oWindows

bPingAvailable = False

Set oLocalWMI = GetObject("winmgmts:\\.\root\cimv2")

Set cWindows = oLocalWMI.ExecQuery("Select BuildNumber from Win32_OperatingSystem",,48)

For Each oWindows In cWindows

 If oWindows.BuildNumber >= 2600 Then

 bPingAvailable = True

 End If

Next

'was ping requested?

If WScript.Arguments.Named.Exists("ping") Then

 If bPingAvailable Then

 Verbose "will attempt to ping all connections to improve performance"

 Else

 WScript.Echo "*** /ping not supported prior to Windows XP"

 End If

End If

'check required arguments

If Not WScript.Arguments.Named.Exists("password") Or Not

 WScript.Arguments.Named.Exists("user") Then

 WScript.Echo "One or more required arguments are missing."

 WScript.Arguments.ShowUsage

 WScript.Quit

End If

'either /list, /computer, or /container was specified:

Dim sName

If WScript.Arguments.Named("list") <> "" Then

 'specified list - read names from file

 Dim oFSO, oTS

 Verbose "Reading names from file " & WScript.Arguments.Named("list")

 Set oFSO = WScript.CreateObject("Scripting.FileSystemObject")

 On Error Resume Next

 Set oTS = oFSO.OpenTextFile(WScript.Arguments.Named("list"))

 If Err <> 0 Then

 WScript.Echo "Error opening " & WScript.Arguments.Named("list")

 WScript.Echo Err.Description

234 Part III: Advanced Scripting Techniques, Tools, and Technologies

 WScript.Quit

 End If

 Do Until oTS.AtEndOfStream

 sName = oTS.ReadLine

 TakeAction sName

 Loop

 oTS.Close

Elseif WScript.Arguments.Named("container") <> "" Then

 'specified container - read names from AD

 Dim oObject, oRoot, oChild

 Verbose "Reading names from AD container " & WScript.Arguments.Named("container")

 On Error Resume Next

 Set oRoot = GetObject("LDAP://rootDSE")

 If Err <> 0 Then

 WScript.Echo "Error connecting to default Active Directory domain"

 WScript.Echo Err.Description

 WScript.Quit

 End If

 Set oObject = GetObject("LDAP://ou=" & WScript.Arguments.Named("container") & _

 "," & oRoot.Get("defaultNamingContext"))

 If Err <> 0 Then

 WScript.Echo "Error opening organizational unit " &

WScript.Arguments.Named("container")

 WScript.Echo Err.Description

 WScript.Quit

 End If

 WorkWithOU oObject

Elseif WScript.Arguments.Named("computer") <> "" Then

 'specified single computer

 Verbose "Running command against " & WScript.Arguments.Named("computer")

 TakeAction WScript.Arguments.Named("computer")

End If

'display output so user will know script finished

WScript.Echo "Command completed."

' --

' Sub WorkWithOU

'

' Iterates child objects in OU; calls itself to handle sub-OUs If

' /recurse argument supplied

' --

Sub WorkWithOU(oObject)

 For Each oChild In oObject

 Select Case oChild.Class

 Case "computer"

 TakeAction Right(oChild.Name,len(oChild.name)-3)

 Case "user"

 Case "organizationalUnit"

 If WScript.Arguments.Named.Exists("recurse") Then

 'recursing sub-OU

 Verbose "Working In " & oChild.Name

Chapter 8: Advanced ADSI and LDAP Scripting 235

 WorkWithOU oChild

 End If

 End Select

 Next

End Sub

' --

' Sub TakeAction

'

' Makes connection and performs command-specific code

' --

Sub TakeAction(sName)

 'verbose output?

 Verbose "Connecting to " & sName

 'ping before connecting?

 If WScript.Arguments.Named.Exists("ping") Then

 If Not TestPing(sName,bPingAvailable) Then

 LogBadConnect(sName)

 Exit Sub

 End If

 End If

 '###

 '# COMMAND CODE GOES HERE #

 '#---#

 '# #

 Dim oUser

 On Error Resume Next

 Set oUser = QueryADSI(sName,"WinNT://" & sName & "/" & WScript.Arguments.Named("user")

& ",user", "")

 If Not IsObject(oUser) Then

 WScript.Echo " *** Couldn't retrieve user from " & sName

 Else

 On Error Resume Next

 oUser.setpassword WScript.Arguments.Named("password")

 If Err <> 0 Then

 WScript.Echo " *** Couldn't change password on " & sname

 WScript.Echo " " & Err.Description

 Else

 Verbose " Changed password on " & sName

 End If

 End If

 '# #

 '#---#

 '# END COMMAND CODE #

 '###

End Sub

236 Part III: Advanced Scripting Techniques, Tools, and Technologies

' --

' Sub LogBadConnect

'

' Logs failed connections to a log file. Will append if file already exists.

' --

Sub LogBadConnect(sName)

 If WScript.arguments.Named.Exists("log") Then

 Dim oLogFSO, oLogFile

 Set oLogFSO = WScript.CreateObject("Scripting.FileSystemObject")

 On Error Resume Next

 Set oLogFile = oLogFSO.OpenTextFile(WScript.Arguments.Named("log"),8,True)

 If Err <> 0 Then

 WScript.Echo " *** Error opening log file to log an unreachable

computer"

 WScript.Echo " " & Err.Description

 Else

 oLogFile.WriteLine sName

 oLogFile.Close

 Verbose " Logging " & sName & " as unreachable"

 End If

 End If

End Sub

' --

' Function TestPing

'

' Tests connectivity to a given name or address; returns true or False

' --

Function TestPing(sName,bPingAvailable)

 If Not bPingAvailable Then

 WScript.Echo " Ping functionality not available prior to Windows XP"

 Exit Function

 End If

 Dim cPingResults, oPingResult

 Verbose " Pinging " & sName

 Set cPingResults = GetObject("winmgmts://./root/cimv2").ExecQuery("SELECT * FROM

Win32_PingStatus WHERE Address = '" & sName & "'")

 For Each oPingResult In cPingResults

 If oPingResult.StatusCode = 0 Then

 TestPing = True

 Verbose " Success"

 Else

 TestPing = False

 Verbose " *** FAILED"

 End If

 Next

End Function

' --

' Sub Verbose

'

' Outputs status messages if /verbose argument supplied

' --

Sub Verbose(sMessage)

Chapter 8: Advanced ADSI and LDAP Scripting 237

 If WScript.Arguments.Named.Exists("verbose") Then

 WScript.Echo sMessage

 End If

End Sub

' --

' Sub LogFile

'

' Outputs specified text to specified logfile. Set Overwrite=True To

' overwrite existing file, otherwise file will be appended to.

' Each call to this sub is a fresh look at the file, so don't Set

' Overwrite=True except at the beginning of your script.

' --

Sub LogFile(sFile,sText,bOverwrite)

 Dim oFSOOut,oTSOUt,iFlag

 If bOverwrite Then

 iFlag = 2

 Else

 iFlag = 8

 End If

 Set oFSOOut = WScript.CreateObject("Scripting.FileSystemObject")

 On Error Resume Next

 Set oTSOUt = oFSOOut.OpenTextFile(sFile,iFlag,True)

 If Err <> 0 Then

 WScript.Echo "*** Error logging to " & sFile

 WScript.Echo " " & Err.Description

 Else

 oTSOUt.WriteLine sText

 oTSOUt.Close

 End If

End Sub

' --

' Function QueryWMI

'

' Executes WMI query and returns results. User and Password may be

' passed as empty strings to use current credentials; pass just a blank

' username to prompt for the password

' --

Function QueryWMI(sName,sNamespace,sQuery,sUser,sPassword)

 Dim oWMILocator, oWMIService, cInstances

 On Error Resume Next

 'create locator

 Set oWMILocator = CreateObject("WbemScripting.SWbemLocator")

 If sUser = "" Then

 'no user - connect w/current credentials

 Set oWMIService = oWMILocator.ConnectServer(sName,sNamespace)

 If Err <> 0 Then

 WScript.Echo "*** Error connecting to WMI on " & sName

 WScript.Echo " " & Err.Description

 Set QueryWMI = Nothing

 Exit Function

 End If

238 Part III: Advanced Scripting Techniques, Tools, and Technologies

 Else

 'user specified

 If sUser <> "" And sPassword = "" Then

 'no password - need to prompt for password

 If LCase(Right(WScript.FullName,11)) = "cscript.exe" Then

 'cscript - attempt to use ScriptPW.Password object

 Dim oPassword

 Set oPassword = WScript.CreateObject("ScriptPW.Password")

 If Err <> 0 Then

 WScript.Echo " *** Cannot prompt for password prior

to Windows XP"

 WScript.Echo " Either ScriptPW.Password object

not present on system, Or"

 WScript.Echo " " & Err.Description

 WScript.Echo " Will try to proceed with blank password"

 Else

 WScript.Echo "Enter password for user '" & sUser & "' on

'" & sName & "'."

 sPassword = oPassword.GetPassword()

 End If

 Else

 'wscript - prompt with InputBox()

 sPassword = InputBox("Enter password for user '" & sUser & "' on

'" & sName & "'." & vbcrlf & vbcrlf & _

 "WARNING: Password will echo to the screen. Run command with

CScript to avoid this.")

 End if

 End If

 'try to connect using credentials provided

 Set oWMIService =

oWMILocator.ConnectServer(sName,sNamespace,sUser,sPassword)

 If Err <> 0 Then

 WScript.Echo " *** Error connecting to WMI on " & sName

 WScript.Echo " " & Err.Description

 Set QueryWMI = Nothing

 Exit Function

 End If

 End If

 'execute query

 If sQuery <> "" Then

 Set cInstances = oWMIService.ExecQuery(sQuery,,48)

 If Err <> 0 Then

 WScript.Echo "*** Error executing query "

 WScript.Echo " " & sQuery

 WScript.Echo " " & Err.Description

 Set QueryWMI = Nothing

 Exit Function

 Else

 Set QueryWMI = cInstances

 End If

Chapter 8: Advanced ADSI and LDAP Scripting 239

 Else

 Set QueryWMI = oWMIService

 End If

End Function

' --

' Function QueryADSI

'

' Executes ADSI query. Expects variable sQuery to include a COMPLETE

' query beginning with the provider LDAP:// or WinNT://. The query String

' may include a placeholder for the computer name, such as "%computer%".

' Include the placeholder in variable sPlaceholder to have it replaced

' with the current computer name. E.g.,

' sQuery = "WinNT://%computer%/Administrator,user"

' sPlaceholder = "%computer%

' Will query each computer targeted by the script and query their local

' Administrator user accounts.

' --

Function QueryADSI(sName,sQuery,sPlaceholder)

 Dim oObject

 sQuery = Replace(sQuery,sPlaceholder,sName)

 On Error Resume Next

 Verbose " Querying " & sQuery

 Set oObject = GetObject(sQuery)

 If Err <> 0 Then

 WScript.Echo " *** Error executing ADSI query"

 WScript.Echo " " & sQuery

 WScript.Echo " " & Err.Description

 Set QueryADSI = Nothing

 Else

 Set QueryADSI = oObject

 End If

End Function

]]>

 </script>

 </job>

</package>

240 Part III: Advanced Scripting Techniques, Tools, and Technologies

The main part of the script uses the WinNT provider.

 Dim oUser

 On Error Resume Next

 Set oUser = QueryADSI(sName,"WinNT://" & _

 sName & "/" & WScript.Arguments.Named("user") & ",user", "")

 If Not IsObject(oUser) Then

 WScript.Echo " *** Couldn't retrieve user from " & sName

 Else

 On Error Resume Next

 oUser.setpassword WScript.Arguments.Named("password")

 If Err <> 0 Then

 WScript.Echo " *** Couldn't change password on " & sname

 WScript.Echo " " & Err.Description

 Else

 Verbose " Changed password on " & sName

 End If

 End If

The script simply connects to the current computer, retrieves the specified user account, and
changes its password.

Scripting Active Directory Security
Security can be one of the toughest things to script in Active Directory, mainly because secu-
rity itself is complicated. Trustees are the users and groups to which permissions are assigned.
Discretionary access control lists (DACL) are applied to each Active Directory object. DACLs
consist of one or more access control entries (ACE), each of which assigns specific permis-
sions to a specific trustee. Scripting all that can be a mess.

Active Directory also includes extended rights. These are permissions that don’t apply specif-
ically to an attribute, but rather govern a specific action, such as the permission to reset a
user’s password, or to send messages as a user. Extended rights are stored as discrete objects
within Active Directory. To script with these objects, start by defining a few constants for the
values you’ll need to use.

Const ADS_ACETYPE_ACCESS_ALLOWED_OBJECT = &H5

Const ADS_FLAG_OBJECT_TYPE_PRESENT = &H1

Const ADS_RIGHT_DS_CONTROL_ACCESS = &H100

Next connect to a specific user—the one to whom you want to grant permissions. For our
example, we’re going to give user JHicks permission to reset the password for DJones’
account. Use a regular LDAP query.

Set objUser = GetObject("LDAP://CN=DJones,OU=MIS,DC=company,DC=pri")

Next you need to find the user’s ntSecurityDescriptor property (we discussed this property in
the discussion on ADSVW, earlier in this chapter). From that security descriptor, you’ll
retrieve the set of DACLs.

Chapter 8: Advanced ADSI and LDAP Scripting 241

Set objSD = objUser.Get("ntSecurityDescriptor")

Set objDACL = objSD.DiscretionaryACLSet

You now add a new ACE to the DACL, giving JHicks the necessary permission. First, create a
new ACE object.

objAce = CreateObject("AccessControlEntry")

Then add the new trustee. You can use in the old-fashioned domain\username format.

objAce.Trustee = "company\jhicks"

Set the ACE’s flags to zero. These flags govern aspects like inheritance, which we aren’t config-
uring. You’ll use the constants you declared earlier to give the ACE object allowed permission.

objAce.AceFlags = 0

objAce.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT

objAce.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT

The ACE is granting permission on an object, and the object type is present in the ACL. You
now have to specify which object, and you do that by using the object’s globally unique iden-
tifier (GUID). This identifies the object type in the ACL.

objAce.ObjectType = "{00299570-246d-11d0-a768-00aa006e0529}"

GUIDs are tough to remember (you can declare them in constants within your script to make
them more readable), so here’s a list.

■ Change Password: {ab721a53-1e2f-11d0-9819-00aa0040529b}

■ Reset Password: {00299570-246d-11d0-a768-00aa006e0529}

■ Receive As: {ab721a56-1e2f-11d0-9819-00aa0040529b}

■ Send As: {ab721a54-1e2f-11d0-9819-00aa0040529b}

We’ve already specified that we are granting permission, so we now need to indicate which
specific permissions are being granted. Because this is an extended right, only the
CONTROL_ACCESS permission makes sense.

objAce.AccessMask = ADS_RIGHT_DS_CONTROL_ACCESS

Add the new ACE to the DACL.

objDACL.AddAce objAce

Add the revised DACL to the security descriptor.

objSD.DiscretionaryAcl = objDACL

Now save the revised security descriptor back to the user account.

objUser.Put "ntSecurityDescriptor", Array(objSD)

objUser.SetInfo

242 Part III: Advanced Scripting Techniques, Tools, and Technologies

Listing 8-4 is the complete script.

Listing 8-4 Add Extended Rights in Active Directory
Const ADS_ACETYPE_ACCESS_ALLOWED_OBJECT = &H5

Const ADS_FLAG_OBJECT_TYPE_PRESENT = &H1

Const ADS_RIGHT_DS_CONTROL_ACCESS = &H100

Set objUser = GetObject("LDAP://CN=DJones,OU=MIS,DC=company,DC=pri")

Set objSD = objUser.Get("ntSecurityDescriptor")

Set objDACL = objSD.DiscretionaryACLSet

objAce = CreateObject("AccessControlEntry")

objAce.Trustee = "company\jhicks"

objAce.AceFlags = 0

objAce.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT

objAce.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT

objAce.ObjectType = "{00299570-246d-11d0-a768-00aa006e0529}"

objAce.AccessMask = ADS_RIGHT_DS_CONTROL_ACCESS

objDACL.AddAce objAce

objSD.DiscretionaryAcl = objDACL

objUser.Put "ntSecurityDescriptor", Array(objSD)

objUser.SetInfo

To grant the permission for an entire OU, instead of retrieving the DJones user account in the
initial LDAP query, retrieve an OU. However, the permission applied to the OU must be inher-
ited by its child objects, so the permission applies to the users within the OU, and not just to
the OU itself. Listing 8-5 is the revised script, with the changes in bold italic.

Listing 8-5 Grant Permissions to an OU
Const ADS_ACETYPE_ACCESS_ALLOWED_OBJECT = &H5

Const ADS_FLAG_OBJECT_TYPE_PRESENT = &H1

Const ADS_FLAG_INHERITED_OBJECT_TYPE_PRESENT = &H2

Const ADS_RIGHT_DS_CONTROL_ACCESS = &H100

Const ADS_ACEFLAG_INHERIT_ACE = &H2

Set objOU = GetObject("LDAP://OU=MIS,DC=company,DC=pri")

Set objSD = objOU.Get("ntSecurityDescriptor")

Set objDACL = objSD.DiscretionaryACL

Set objAce = CreateObject("AccessControlEntry")

objAce.Trustee = "company\jhicks"

objAce.AceFlags = ADS_ACEFLAG_INHERIT_ACE

objAce.AceType = ADS_ACETYPE_ACCESS_ALLOWED_OBJECT

objAce.Flags = ADS_FLAG_OBJECT_TYPE_PRESENT OR _

 ADS_FLAG_INHERITED_OBJECT_TYPE_PRESENT

objAce.ObjectType = "{00299570-246d-11d0-a768-00aa006e0529}"

objACE.InheritedObjectType = "{BF967ABA-0DE6-11D0-A285-00AA003049E2}"

objAce.AccessMask = ADS_RIGHT_DS_CONTROL_ACCESS

objDACL.AddAce objAce

objSD.DiscretionaryAcl = objDACL

objOU.Put "ntSecurityDescriptor", Array(objSD)

objOU.SetInfo

Chapter 8: Advanced ADSI and LDAP Scripting 243

There are only a few changes here. First, we added two constants to handle the inherited
rights. Next, we set the AceFlags property to indicate that this ACE, applied to an OU, should
be inherited. The Flags property still gets the OBJECT_TYPE_PRESENT flag, indicating that the
object is in the ACE itself. The INHERITED_OBJECT_TYPE_PRESENT flag is added as well. As
a result, we needed to add the InheritedObjectType property, which is the GUID of the user
account object class. This is not a GUID for a specific account, it is for the user account class
itself. This means the permission will be inherited only by user accounts, and not by comput-
ers or whatever else might be in the OU. We found the GUID at the following Web site. (Scroll
down, click User, and the Schema-Id-Guid is displayed near the top of the page.)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/adschema/adschema
/classes_all.asp

On the CD This link is included on the companion CD. Click Schema Reference (User).

More Info Check out the Scripting Guys’ articles about scripting Active Directory
security at

http://www.microsoft.com/technet/scriptcenter/topics/security/propset.mspx

(This link is on the companion CD; click Using Scripts to Manage Active Directory Security.)

Summary
In this chapter, we showed you new ways of exploring Active Directory and the WinNT pro-
vider. We covered some advanced scripting techniques, including the Active Directory secu-
rity model. We also introduced techniques for using the WinNT ADSI provider to perform
various computer-management tasks. Hopefully, this will give you some ideas for writing
ADSI-based scripts to help automate Windows management in your organization.

245

Chapter 9

Using ADO and ADSI Together

In this chapter:

Understanding the ADSI Provider for ADO . 246

Connecting to ADSI by Using ADO. 247

Treating Active Directory as a Database. 248

Writing ADSI Queries to Retrieve Information . 251

Writing ADSI Queries to Make Changes . 254

Viewing ADO and ADSI in Action . 256

Summary . 260

Microsoft’s database access technology, ActiveX Data Objects (ADO), can be used to effi-
ciently work with Active Directory. We’ll explore how this integration of database and direc-
tory works, and how it can provide some great capabilities to your scripts. Although it might
seem strange to have two completely different means—ADO and Active Directory Services
Interface (ADSI)—to work with Active Directory, you’ll find that ADO has its own strengths
and weaknesses, making it well worth the time to learn how to use it.

In Chapter 8, “Advanced ADSI and LDAP Scripting,” we briefly discussed connecting to ADSI
by using ADO as a means to overcome the 1000-record limit in ADSI queries. Whereas the
standard Lightweight Directory Access Protocol (LDAP) provider isn’t intended to return
large query result sets, ADO is designed to work with billion-record databases. ADO includes
a paging mechanism that allows large result sets to be retrieved in smaller, more manageable
chunks called pages. To illustrate this concept, we used a function like the one in the following
example, which is capable of scanning through a very large result set to locate an object’s dis-
tinguished name.

Function strGetDN(samAccount)

 'Given NT4 account name, find the distinguished name

 On Error Resume Next

 Dim objConn,objCmd,objRS

 Set objConn=Createobject("ADODB.Connection")

 Set objCmd=Createobject("ADODB.Command")

 strGetDN="NotFound"

 Set objRoot=Getobject("LDAP://RootDSE")

 Set objDomain=Getobject("LDAP://"& objRoot.get("DefaultNamingContext"))

 strQuery="Select sAMAccountname,distinguishedname from '" & _

 objDomain.AdsPath & "' Where objectCategory='person' AND " & _

 "objectclass='user'" & _

 " AND sAMAccountName='" & samAccount & "'"

246 Part III: Advanced Scripting Techniques, Tools, and Technologies

 set objCatalog=Getobject("GC:")

 for each objItem In objCatalog

 Set objGC=objItem

 Next

 objConn.Provider="ADSDSOobject"

 objConn.Open "Active Directory Provider"

 objCmd.ActiveConnection=objConn

 objCmd.Properties("Page Size") = 100

 objCmd.Properties("asynchronous")=True

 objCmd.Properties("Timeout") =30

 objCmd.Properties("Cache Results") = False

 objCmd.CommandText=strQuery

 set objRS=objCmd.Execute

 do while not objRS.EOF

 strGetDN=objRS.Fields("distinguishedname")

 objRS.movenext

 Loop

 objRS.Close

 objConn.Close

 set objConn=Nothing

 set objCmd=Nothing

 set objRoot=Nothing

 set objCatalog=Nothing

 set objRS=Nothing

End Function

In this chapter, we’re going to examine this example in detail and show you how ADO pro-
vides access to information inside Active Directory.

More Info If you’re not already comfortable working with ADO, we suggest that you read
Chapter 7, “Database Scripting,” before continuing with this chapter. Chapter 7 explains the
basic concepts behind database scripting and ADO, and we’ll be building on those concepts.

Understanding the ADSI Provider for ADO
A connection string is one way to tell ADO what type of database to use and where to find it. For
example, the following connection string connects to a Microsoft Access database located at
C:\MyDB.mdb.

Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\MyDB.mdb;

A critical part of a connection string is the provider. In this example, the provider is
Microsoft.Jet.OLEDB.4.0, which is the OLE DB provider used by Access databases. To treat
Active Directory as a database, we need to use a provider that allows ADO to connect to Active
Directory. The Microsoft OLE DB Provider for Microsoft Active Directory Service (ADSI Pro-
vider, for short) is bundled into Microsoft Windows. The simplest way to start using the ADSI
Provider is to create a new ADO Connection object, and pass the ADSI Provider’s name, ADS-
DSOObject, to it in the ConnectionString property.

Chapter 9: Using ADO and ADSI Together 247

Dim objConn

Set objConn = CreateObject("ADODB.Connection")

objConn.ConnectionString = "ADSDSOobject"

objConn.Open

This uses your current credentials to open a connection to the domain to which your com-
puter belongs. Notice that we’re using the ConnectionString property, as opposed to the
Provider property that we used in the original example. For the most part, the two properties
are interchangeable when it comes to ADSI connectivity.

The ADSI Provider—like other parts of ADSI—can connect to more than just Active Directory.
In fact, it can connect to Windows NT directory services, non-Microsoft LDAP directories, and
more, including Novell Directory Services (NDS).

Connecting to ADSI by Using ADO
It might seem like we’ve gotten ahead of ourselves by showing you how to connect to Active
Directory through ADO, but we haven’t. There’s much more to ADO and ADSI than a basic
connection that utilizes your current credentials. For example, one of the most common vari-
ations of the connection string we showed you allows you to specify alternate credentials for
your connection.

Dim objConn

Set objConn = CreateObject("ADODB.Connection")

objConn.ConnectionString = "Provider=ADSDSOObject;" & _

 "User ID=MyUserID;Password=MyPassword;"

objConn.Open

This can be a tremendously useful technique because it can be used to specify alternate cre-
dentials when creating an ADO connection to Active Directory.

Important This technique does not mean you should hard-code credentials into your
scripts. As we discussed in Chapter 2, “Script Security,” there’s no safe way to hard-code any cre-
dentials in your scripts safely. Instead, use a function like InputBox to prompt for the alternate
username or password, store them in variables, and then pass the contents of those variables in
your connection string. Of course, you could always just run your script by using the RunAs
command-line utility, which allows you to enter alternate credentials.

You also need to pass commands, or queries, to the database, and then you need to take care
of the results that are returned. The same holds true when the database is Active Directory.

248 Part III: Advanced Scripting Techniques, Tools, and Technologies

Treating Active Directory as a Database
Let’s put together a query to send to Active Directory. In the example at the beginning of this
chapter, we built the query in a string variable.

strQuery="Select sAMAccountname,cn,distinguishedname from '" & _

 objDomain.AdsPath & "' Where objectCategory='person' AND " & _

 "objectclass='user'" & _

 " AND sAMAccountName='" & samAccount & "'"

Assuming our domain is named company.pri, and the variable, samAccount, contains the string
DONJ, this query will look something like this.

Select sAMAccountname,distinguishedname from

 'dc=company,dc=pri' Where objectCategory = 'person' AND

 objectclass='user' AND sAMAccountName='DONJ'

This is a pretty straightforward SQL query. Here’s what it’s doing.

■ Querying the sAMAccountName and distinguishedName properties from Active Directory
objects that match the query criteria. Active Directory properties (attributes, as they’re
more properly called) serve in place of the columns you’d find in a traditional database
like Access or Microsoft SQL Server.

Tip We often need to map an individual attribute to a particular check box, text field,
or some other graphical element within Active Directory. Microsoft maintains a com-
plete list of the GUI-to-attribute mappings at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ad/ad
/mappings_for_the_active_directory_users_and_computers_snap-in.asp

(This link, like most of the links referenced in this book, is included on the companion
CD; click Mappings for the Active Directory Users and Computers Snap-in.)

■ Specifying the source of the records that we want to query, which is the company.pri
domain.

■ Specifying three query criteria, so only objects meeting all three criteria (because the
And operator was used) will be returned as results of the query. The specified criteria are
the following:

❑ The objectCategory attribute must contain person.

❑ The objectClass attribute must contain user.

❑ The sAMAccountName attribute must contain DONJ.

Chapter 9: Using ADO and ADSI Together 249

Tip In most SQL queries, anything outside quotation marks isn’t case-sensitive. The attribute
name objectclass works just as well as objectClass. However, values inside single quotation
marks (which are used to delimit string literals) are case-sensitive. Therefore, user must be
written in all lowercase letters because that’s how Active Directory stored the value.

Next, the query is assigned to the CommandText property of an ADO Command object. The
Command object also needs to be connected to the open Connection object.

Dim objCmd

Set objCmd = CreateObject("ADODB.Command")

objCmd.ActiveConnection=objConn

objCmd.CommandText=strQuery

Now the command can be executed; doing so returns an ADO Recordset object.

 Set objRS = objCmd.Execute

As we explained in Chapter 7, there are various types of ADO Recordset objects. The Execute
method of a Connection or Command object returns a static, forward-only Recordset object.
With ADSI, the Command object’s Execute method will always return static Recordset objects.
It’s useful to understand how some of the Recordset object’s properties are affected by the fact
that only static recordsets are available. Here’s a list of all the Recordset object’s properties and
how they are used in an ADSI connection.

■ AbsolutePage This property is read/write.

■ AbsolutePosition This property is read/write.

■ ActiveConnection This property is read only.

■ BOF This property is read only.

■ Bookmark This property is read/write.

■ CacheSize This property is read/write.

■ CursorLocation This property must always use the adUseServer constant (which is the
default).

■ CursorType This property must always be set to adOpenStatic (which is the default).

■ EditMode This property will always be set to adEditNone, meaning you can’t edit the
recordset directly.

■ EOF This property is read only.

■ Filter This property is read/write.

■ LockType This property is read/write.

■ MarshalOptions This property is not supported.

■ MaxRecords This property is read/write.

250 Part III: Advanced Scripting Techniques, Tools, and Technologies

■ PageCount This property is read only.

■ PageSize This property is read/write. If you don’t set this property, as we did in our
original example, paging will be disabled and you’ll get a maximum of about 1000
records for any query. To enable automatic paging, you must set this property.

■ RecordCount This property is read only.

■ Source This property is read/write.

■ State This property is read only.

■ Status This property is read only.

Probably the most important property to set is the PageSize property. We set it by specifying
the property name in the Command object’s Properties collection.

 objCmd.Properties("Page Size") = 100

This sets a page size of 100 records and forces ADO to query the next 100 records when
you navigate to near the end of the current page. Remember that you use the standard ADO
methods—primarily the MoveNext method—to navigate through the recordset. Here’s a com-
plete list of the methods that are supported in an ADSI recordset.

■ Clone

■ Close

■ GetRows

■ Move

■ MoveFirst

■ MoveLast

■ MoveNext

■ MovePrevious

■ NextRecordset

■ Open

■ Requery

■ Resync

■ Supports

To be clear, the following methods are not available.

■ AddNew

■ Cancel

■ CancelBatch

Chapter 9: Using ADO and ADSI Together 251

■ CancelUpdate

■ Delete

■ Update

■ UpdateBatch

Notice that the methods that aren’t available are all associated with making changes to the
recordset. Because only static recordsets are available, making changes isn’t allowed.

You can explore the Active Directory schema to see a complete list of available Active Directory
attributes for the various classes. We suggest using the Active Directory Schema console to do
so. Simply open a new Microsoft Management Console (MMC) session and add the Active
Directory Schema snap-in.

Tip The Active Directory Schema snap-in isn’t available by default, so you’ll need to register
it the first time so that it will be in the list of available snap-ins. To register it, open a command-
line window and type regsvr32 schmmgmt.dll (you might need to use the System32 folder to
do this correctly). You should see a dialog box indicating a successful registration, and the next
time you open the MMC, the snap-in should be listed.

Writing ADSI Queries to Retrieve Information
We’ve already explained how to query Active Directory through ADO by using a SQL query.
As an alternative to the SQL syntax, however, you can use a special query syntax that’s unique
to ADSI. It’s a four-part query specification.

Root; Filter; Attributes [; Scope]

The last part, Scope, is optional, which is why it’s typically shown in square brackets. The Root
portion of the query is an LDAP reference to the starting point of your query. This might be
targeted at a Global Catalog server.

<GC://dc=company,dc=pri>

It could also be a simple LDAP reference to an organizational unit (OU).

<LDAP://ou=Sales,dc=company,dc-pri>

The Filter portion of the query limits the types of objects that are returned by the query. You
can specify a filter that is, in effect, no filter at all, allowing all objects to be retrieved.

(objectClass=*)

252 Part III: Advanced Scripting Techniques, Tools, and Technologies

Filters are contained in parentheses and take the basic format of attribute=value. For example,
this will only return user objects.

(objectCategory=user)

This will query groups that have a particular user as a member.

(&(objectCategory=Group)(member=cn=TestUser,ou=it,dc=company,dc=pri))

Let’s look at this filter in detail. Notice that there are two criteria specified: one for object-
Category and one for member. Both are contained within an outer set of parentheses, and an
ampersand (a Boolean And) indicates that both criteria must be true for all returned results. A
pipe character (located above the backslash key on most keyboards) would indicate a Boolean
Or, allowing either of the criteria to be met for the object to be included in the query result set.

Note This filter format is an industry standard, specified in RFC 1960.

The Attributes portion of the query is a comma-delimited list of the attributes you want the
query to return.

ADsPath, sn, givenName

The Scope portion of the query limits the depth of the query in the Active Directory tree. You
can specify Base to search only the object specified as the base, OneLevel to search the base and
one level down, or Subtree to specify the base and anything below it. An entire query might
look something like this.

<LDAP://dc=company,dc-pri>;(objectClass=*);distinguishedName;subtree

This connects to the company.pri domain, queries all objects, returns only their distinguished-
Name attribute, and includes the entire tree below the domain root. We prefer to specify the
four parts of the query in individual string variables, and to concatenate them to make an
entire query—it makes the script a bit easier to read.

As an example, we will query all users from Active Directory and display their backward-
compatible NT name as well as their Active Directory canonical name (cn). We start by con-
necting to Active Directory through ADO, and setting up an ADO Command object.

Set objCmd = CreateObject("ADODB.Command")

Set objCn = CreateObject("ADODB.Connection")

objCn.Provider = "ADsDSOObject"

objCn.Open "Active Directory Provider"

objCmd.ActiveConnection = objCn

Chapter 9: Using ADO and ADSI Together 253

Next we specify the base portion of our query—an LDAP reference to the domain root.

Tip The only case-sensitive part of this is the LDAP, GC, or other protocol or provider name.

strBase = "<LDAP://dc=company,dc=pri>"

We specify the filter as anything with an objectCategory of person and an objectClass of user.
Note the ampersand, which specifies that both filter criteria must be true.

strFilter = "(&(objectCategory=person)" & _

 "(objectClass=user))"

We specify our attributes listed as the NT-style sAMAccountName and the Active Directory-
style cn.

strAttributes = "sAMAccountName,cn"

Now we build the query and specify a scope of Subtree.

strQuery = strBase & ";" & strFilter & ";" & _

 strAttributes & ";subtree"

This could easily return more than 1,000 records, so we set up the Command object to return
the results in paging blocks of 100.

objCmd.CommandText = strQuery

objCmd.Properties("Page Size") = 100

objCmd.Properties("Timeout") = 30

objCmd.Properties("Cache Results") = False

Now we execute the command to retrieve a recordset.

Set objRS = objCmd.Execute

We run through the recordset one record at a time, displaying the sAMAccountName and cn.

Do Until objRS.EOF

 strName = objRS.Fields("sAMAccountName").Value

 strCN = objRS.Fields("cn").value

 Wscript.Echo "NT Name: " & strName & _

 ", AD Name: " & strCN

 objRS.MoveNext

Loop

Finally, we close the connection when we’re finished.

objCn.Close

254 Part III: Advanced Scripting Techniques, Tools, and Technologies

Listing 9-1 is the script in its entirety.

Listing 9-1 Query All Users
Dim objCmd, objCn

Dim strBase, strFilter, strAttributes

Dim strQuery, objRS, strName, strCN

Set objCmd = CreateObject("ADODB.Command")

Set objCn = CreateObject("ADODB.Connection")

objCn.Provider = "ADsDSOObject"

objCn.Open "Active Directory Provider"

objCmd.ActiveConnection = objCn

strBase = "<LDAP://dc=company,dc=pri>"

strFilter = "(&(objectCategory=person)" & _

 "(objectClass=user))"

strAttributes = "sAMAccountName,cn"

strQuery = strBase & ";" & strFilter & ";" & _

 strAttributes & ";subtree"

objCmd.CommandText = strQuery

objCmd.Properties("Page Size") = 100

objCmd.Properties("Timeout") = 30

objCmd.Properties("Cache Results") = False

Set objRS = objCmd.Execute

Do Until objRS.EOF

 strName = objRS.Fields("sAMAccountName").Value

 strCN = objRS.Fields("cn").value

 Wscript.Echo "NT Name: " & strName & _

 ", AD Name: " & strCN

 objRS.MoveNext

Loop

objCn.Close

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

Writing ADSI Queries to Make Changes
You can only use ADO to read information from Active Directory; you can’t use ADO to make
changes to Active Directory. However, you can use ADO to query information and then use
regular ADSI interfaces to make changes to that information. Here’s a walk-through.

1. Execute an ADO query to retrieve one or more results into a recordset.

2. The ADsPath property, which you can query, contains the complete LDAP path to each
Active Directory object about which you retrieve information.

3. Pass the ADsPath to a regular GetObject function to retrieve the Active Directory objects.

4. Make changes to the information you retrieved.

Chapter 9: Using ADO and ADSI Together 255

Keep in mind that ADO isn’t retrieving actual Active Directory objects—it’s simply retrieving
certain properties of those objects, which is why you can’t really make any changes. To query
information with ADO and make changes, you have to do it in several steps. First, declare an
ADO Connection object and open a connection to Active Directory. We’ve shown you how to
do this by using the ConnectionString property and the Open method; here’s a shortcut that
passes the connection string directly to the Open method.

Set objConnection = CreateObject("ADODB.Connection")

objConnection.Open "Provider=ADsDSOObject;"

Second, write a query and pass it to an ADO Command object. Be sure to set the Command
object’s ActiveConnection property to the Connection object.

Set objCommand = CreateObject("ADODB.Command")

objCommand.ActiveConnection = objConnection

objCommand.CommandText = _

 "<LDAP://dc=company,dc=pri>;" & _

 "(&(objectCategory=person)(objectClass=user));" & _

 "ADsPath;subtree"

In this example, we are querying all user objects from the company.pri domain. Next, we
execute the Command object to return a static (that is, read-only) recordset.

Set objRecordSet = objCommand.Execute

Now we can loop through the recordset and work with one user at a time.

Do Until objRecordset.EOF

We now pull the ADsPath property into a string variable.

 strADsPath = objRecordset.Fields("ADsPath")

We use a regular ADSI query to retrieve the user object.

 Set objUser = GetObject(strADsPath)

We can use the Put method to modify one or more properties. We’ll modify postalCode.

 objUser.Put "postalCode", "89123"

When we’re done, the SetInfo method saves the information back to Active Directory, and the
MoveNext method of the recordset brings up the next user account.

 objUser.SetInfo

 objRecordset.MoveNext

Loop

Close the ADO connection to Active Directory.

objConnection.Close

256 Part III: Advanced Scripting Techniques, Tools, and Technologies

Listing 9-2 is the entire script.

Listing 9-2 Query and Modify
Set objConnection = CreateObject("ADODB.Connection")

objConnection.Open "Provider=ADsDSOObject;"

Set objCommand = CreateObject("ADODB.Command")

objCommand.ActiveConnection = objConnection

objCommand.CommandText = _

 "<LDAP://dc=company,dc=pri>;" & _

 "(&(objectCategory=person)(objectClass=user));" & _

 "ADsPath;subtree"

Set objRecordSet = objCommand.Execute

Do Until objRecordset.EOF

 strADsPath = objRecordset.Fields("ADsPath")

 Set objUser = GetObject(strADsPath)

 objUser.Put "postalCode", "89123"

 objUser.SetInfo

 objRecordset.MoveNext

Loop

objConnection.Close

Note The recordset you query with ADO is static. That means it won’t usually reflect any
changes that were made after the recordset was built. (There are some exceptions to this, espe-
cially in large result sets where data is retrieved in pages. Each page will be up to date at the
time it’s queried and sent to your computer.) In this example, checking the ADO recordset for
the postalCode property would return the old property value, not the new value just specified.

Viewing ADO and ADSI in Action
You can use ADO and ADSI to test for group membership, including nested group member-
ship. This capability is very useful in a login script for mapping drives and printers to user
groups, for example. However, ADSI doesn’t contain many built-in ways to check nested
group membership, so you’ll have to build your own function. We built one called IsMember.
The function first checks whether a VBScript Dictionary object named objGroupList exists,
and if it doesn’t, the function creates it. Note that we’re using the objGroupList variable across
functions, so it must be declared globally—outside the function itself—so that it’ll be globally
available.

Dim strUser, objGroupList, strGroup

Dim objRootDSE, strDNSDomain, objCmd, objCn

Dim strBase, strAttributes

Function IsMember(strGroup)

 If IsEmpty(objGroupList) Then

 Set objGroupList = CreateObject("Scripting.Dictionary")

Chapter 9: Using ADO and ADSI Together 257

We set a comparison option for the Dictionary object to help ensure that comparison details,
such as capitalization differences, don’t matter. The option we’re specifying, for example,
ensures that the string Sample is treated the same as the string sample.

 objGroupList.CompareMode = vbTextCompare

Now we retrieve the DNS name of the domain.

 Set objRootDSE = GetObject("LDAP://RootDSE")

 strDNSDomain = objRootDSE.Get("DefaultNamingContext")

To search Active Directory, we create and open an ADO Connection object, and create an ADO
Command object. We connect the Command object to the Connection object and specify a base
query that queries the base domain from a Global Catalog server.

 Set objCmd = CreateObject("ADODB.Command")

 Set objCn = CreateObject("ADODB.Connection")

 objCn.Provider = "ADsDSOObject"

 objCn.Open "Active Directory Provider"

 objCmd.ActiveConnection = objCn

 strBase = "<GC://" & strDNSDomain & ">"

We want to query the distinguishedName property, so we put that property name into a string
variable.

 strAttributes = "distinguishedName"

To help avoid a huge result set, we specify the properties that set up paging.

 objCmd.Properties("Page Size") = 100

 objCmd.Properties("Timeout") = 30

 objCmd.Properties("Cache Results") = False

Finally, we call a LoadGroups function that loads all groups to which the user belongs into our
Dictionary object. Notice that we pass the distinguished name of the user account. When we’re
finished, we close the ADO connection. Note that our call to LoadGroups passes filter criteria,
so only groups containing our user’s distinguished name are returned.

 Call LoadGroups("(member=" & strUser & ")")

 objCn.Close

 End If

At this point, every group the user belongs to is in the objGroupList Dictionary object. We use
the Dictionary object’s Exists method to query if the group we’re looking for is in the list. The
Exists method returns a TRUE or FALSE value as the result of the IsMember function.

 IsMember = objGroupList.Exists(strGroup)

End Function

258 Part III: Advanced Scripting Techniques, Tools, and Technologies

We then created a function named LoadGroups that starts by declaring several variables.

Sub LoadGroups(strUserFilter)

 Dim strFilter, strQuery, strDN, objRecordSet

 Dim strNextFilter, blnRecurse

A string variable is constructed to filter the ADO query results. This filter will query only
objects with the Group category, and only groups that have a member property equal to our
user’s distinguished name.

 strFilter = "(&(objectCategory=Group)" & strUserFilter & ")"

Here’s the full query assembled from the base query, the filter, and the list of attributes.

 strQuery = strBase & ";" & strFilter & ";" & strAttributes & ";subtree"

Now we assign the query text to the Command object and execute it. The results are returned
in a Recordset object.

 objCmd.CommandText = strQuery

 Set objRecordSet = objCmd.Execute

 strNextFilter = "(|"

 blnRecurse = False

We go through each result in the recordset and pull the distinguished name of the group into
a string variable.

 Do Until objRecordSet.EOF

 strDN = objRecordSet.Fields("DistinguishedName")

If a group isn’t already in our dictionary, we add it. Because we also want to include nested
groups, we add the group to our filter criteria and set a variable to TRUE, indicating that we
need to recursively query this group’s membership.

 If Not objGroupList.Exists(strDN) Then

 objGroupList(strDN) = True

 strNextFilter = strNextFilter & "(member=" & strDN & ")"

 blnRecurse = True

 End If

 objRecordSet.MoveNext

 Loop

When we recursively process a nested group, the LoadGroups function calls itself, so the
nested group membership is also processed.

 If blnRecurse = True Then

 strNextFilter = strNextFilter & ")"

 Call LoadGroups(strNextFilter)

 End If

End Sub

Chapter 9: Using ADO and ADSI Together 259

You use the function by simply specifying a user account’s distinguished name (DN), and the
group you want to check.

' Get a user object.

strUser = "cn=TestUser,ou=it,dc=company,dc=pro"

' Specify group DN and check for membership.

strGroup = "cn=Admins,ou=it,dc=company,dc=pri"

If IsMember(strGroup) Then

 'is a member

Else

 'is not a member

End If

Listing 9-3 contains the entire script, including code that demonstrates the use of the
IsMember function.

Listing 9-3 Test for Group Membership
Dim strUser, objGroupList, strGroup

Dim objRootDSE, strDNSDomain, objCmd, objCn

Dim strBase, strAttributes

' Get a user object.

strUser = "cn=TestUser,ou=it,dc=company,dc=pri"

' Specify group DN and check for membership.

strGroup = "cn=Admins,ou=it,dc=company,dc=pri"

If IsMember(strGroup) Then

 'is a member

Else

 'is not a member

End If

Function IsMember(strGroup)

' Function to test group membership.

' strGroup is the Distinguished Name of the group.

 If IsEmpty(objGroupList) Then

 Set objGroupList = CreateObject("Scripting.Dictionary")

 objGroupList.CompareMode = vbTextCompare

 ' Get DNS domain name.

 Set objRootDSE = GetObject("LDAP://RootDSE")

 strDNSDomain = objRootDSE.Get("DefaultNamingContext")

 ' Search Active Directory.

 Set objCmd = CreateObject("ADODB.Command")

 Set objCn = CreateObject("ADODB.Connection")

 objCn.Provider = "ADsDSOObject"

 objCn.Open "Active Directory Provider"

 objCmd.ActiveConnection = objCn

 strBase = "<GC://" & strDNSDomain & ">"

 strAttributes = "distinguishedName"

 objCmd.Properties("Page Size") = 100

260 Part III: Advanced Scripting Techniques, Tools, and Technologies

 objCmd.Properties("Timeout") = 30

 objCmd.Properties("Cache Results") = False

 Call LoadGroups("(member=" & strUser & ")")

 objCn.Close

 End If

 IsMember = objGroupList.Exists(strGroup)

End Function

Sub LoadGroups(strMemberFilter)

 Dim strFilter, strQuery, strDN, objRecordSet

 Dim strNextFilter, blnRecurse

 strFilter = "(&(objectCategory=Group)" & strMemberFilter & ")"

 strQuery = strBase & ";" & strFilter & ";" & strAttributes & ";subtree"

 objCmd.CommandText = strQuery

 Set objRecordSet = objCmd.Execute

 strNextFilter = "(|"

 blnRecurse = False

 Do Until objRecordSet.EOF

 strDN = objRecordSet.Fields("DistinguishedName")

 If Not objGroupList.Exists(strDN) Then

 objGroupList(strDN) = True

 strNextFilter = strNextFilter & "(member=" & strDN & ")"

 blnRecurse = True

 End If

 objRecordSet.MoveNext

 Loop

 If blnRecurse = True Then

 strNextFilter = strNextFilter & ")"

 Call LoadGroups(strNextFilter)

 End If

End Sub

Summary
Although ADSI can be used directly to access Active Directory, using ADO has several advan-
tages. ADO can query larger result sets, and it uses a syntax that some administrators find
easier to remember. The syntax ADO uses to access Active Directory is also easily adapted to
other types of databases, making the time spent learning ADO well worth it.

261

Chapter 10

Advanced WMI Scripting

In this chapter:

Understanding Advanced WQL . 262

Using Queries and associator Classes . 267

Using Advanced WMI Security Techniques . 273

Viewing Advanced WMI Scripting in Action . 276

Summary . 283

Windows Management Instrumentation (WMI) is a staple of administrative scripting; it
provides an amazing amount of access into configuration parameters, Windows capabilities,
and much more. In fact, WMI is largely responsible for the surge of interest in administrative
scripting over the past few years. However, most administrators are aware of only a fraction of
what WMI can do. In this chapter, we look at WMI’s often-overlooked advanced capabilities.

WMI is a powerful technology for Microsoft Windows administration. Tools like the Scrip-
tomatic and the WMI wizards built into some commercial script editors have made WMI more
accessible, and they help administrators take advantage of the technology’s capabilities. Even
a simple script like this one, which lists all the local user accounts on the local computer, can
be a valuable administrative tool.

Dim strComputer

Dim objWMIService

Dim propValue

Dim objItem

Dim SWBemlocator

Dim UserName

Dim Password

Dim colItems

strComputer = "."

UserName = ""

Password = ""

Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = SWBemlocator.ConnectServer(strComputer, _

 "\root\CIMV2",UserName,Password)

Set colItems = objWMIService.ExecQuery("Select * from Win32_Account")

For Each objItem in colItems

 WScript.Echo "Caption: " & objItem.Caption

 WScript.Echo "Description: " & objItem.Description

 WScript.Echo "Domain: " & objItem.Domain

 WScript.Echo "InstallDate: " & objItem.InstallDate

 WScript.Echo "LocalAccount: " & objItem.LocalAccount

262 Part III: Advanced Scripting Techniques, Tools, and Technologies

 WScript.Echo "Name: " & objItem.Name

 WScript.Echo "SID: " & objItem.SID

 WScript.Echo "SIDType: " & objItem.SIDType

 WScript.Echo "Status: " & objItem.Status

Next

However, WMI is capable of much more than basic configuration inventory. It can be used
to change configuration settings, cause remote computers to take specific actions, and even
respond to events that occur within Windows.

Understanding Advanced WQL
WMI uses a fairly sophisticated query language, modeled after the Structured Query Lan-
guage (SQL) used by relational database management systems such as SQL Server. This query
language is called the WMI Query Language (WQL), and it is something you’ve doubtless
already encountered. The example shown at the beginning of this chapter includes a short
WQL query.

Select * from Win32_Account

Most WMI queries consist of simply the Select keyword, an asterisk, the From keyword, and a
WMI class name. The query just shown will select all available properties from the designated
class.

Selecting Specific Properties

If you’ve ever written a script that queries an entire WMI class from a group of computers, you
might have wondered if there was a way to speed up the process. Listing 10-1 opens a text file
named C:\Computers.txt, which is expected to contain one computer name per line. The
script then connects to each computer, queries all properties of the Win32_OperatingSystem
class, and displays each computer’s name and current service pack version number.

Listing 10-1 Service Pack Inventory
Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTS = objFSO.OpenTextFile("c:\computers.txt")

Do Until objTS.AtEndOfStream

 objTS.ReadLine

 Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

 Set objWMIService = SWBemlocator.ConnectServer(strComputer,"\root\CIMV2")

 Set colItems = _

 objWMIService.ExecQuery("Select ServicePackMajorVersion " & _

 " from Win32_OperatingSystem Where Primary = True")

 For Each objItem in colItems

 WScript.Echo strComputer & "="

 WScript.Echo objItem.ServicePackMajorVersion

 Next

Loop

objTS.Close

Chapter 10: Advanced WMI Scripting 263

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

Note Listing 10-1 assumes that each computer is available and can be contacted by WMI; it
doesn’t include any error handling if a computer can’t be reached.

This script queries all properties of the Win32_OperatingSystem class, but it uses only one of
them, ServicePackMajorVersion. The other two dozen or so properties are transmitted across
the network but not used, creating waste both on the computer running the script and on the
computer being queried. Because the script might be connecting to hundreds of computers,
this slight inefficiency can be compounded into a major slowdown. One way to speed it up is
to query only what you need.

Select ServicePackMajorVersion from Win32_OperatingSystem

It’s that easy. Simply specify a comma-separated list of the properties you want to query, and
you’ll make your script more efficient, because only the queried properties need to be assem-
bled and transmitted over the network.

Including a WHERE Clause

Just as querying too many properties can cause your script to be inefficient, querying too
many instances can have the same effect. For example, in Listing 10-1, we query all instances
of the Win32_OperatingSystem class. Usually a computer has only one operating system, so
only one instance of the class would be returned. A computer could contain multiple operat-
ing systems, though (when virtual computing becomes more common, that will become more
likely), so that query could, in theory, return multiple instances. If we want the service pack
information for only the primary operating system, we’d be querying and displaying too
much information. Including a WHERE clause in your WQL query can correct that. Listing
10-2 on the next page is an updated version of Listing 10-1.

In Listing 10-2 on the next page, a WHERE clause limits the query to those instances where
the Primary property has a value of TRUE. This clause—which always takes the form property
comparison value, as in Primary = True—is evaluated by the remote computer, which then
returns only those instances of the class that meet the WHERE clause’s conditions.

264 Part III: Advanced Scripting Techniques, Tools, and Technologies

Listing 10-2 Revised Service Pack Inventory
Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTS = objFSO.OpenTextFile("c:\computers.txt")

Do Until objTS.AtEndOfStream

 strComputer = objTS.ReadLine

 Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

 Set objWMIService = SWBemlocator.ConnectServer(strComputer,"\root\CIMV2")

 Set colItems = _

 objWMIService.ExecQuery("Select ServicePackMajorVersion " & _

 " from Win32_OperatingSystem WHERE Primary = True")

 For Each objItem in colItems

 WScript.Echo strComputer & "="

 WScript.Echo objItem.ServicePackMajorVersion

 Next

Loop

objTS.Close

Note When comparing string values, be sure to include the comparison value in single quo-
tation marks. For example, WHERE Property = 'Value'. Numeric values, as well as the Boolean
values TRUE and FALSE, are not enclosed in quotation marks. If you need to include a backslash
character—in a file path, for example—you have to type double backslashes. For example,
WHERE Property = '\\\\Server\\Share' for the path \\Server\Share. If you don’t use double
backslashes, WQL interprets them as a type of data delimiter.

Suppose you want to retrieve all event log entries with an ID of 1073741925 (which on our
systems indicates that the SQL Server agent service was started). You then want to list the time
the event was generated. Listing 10-3 is one way to accomplish this task.

Listing 10-3 Event Log Scanner
strComputer = "."

Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = SWBemlocator.ConnectServer(strComputer, _

 "\root\CIMV2",UserName,Password)

Set colItems = _

 objWMIService.ExecQuery("Select * from Win32_NTLogEvent")

For Each objItem in colItems

 If objItem.EventIdentifier = 1073741925 Then

 WScript.Echo "TimeGenerated: " & objItem.TimeGenerated

 WScript.Echo "TimeWritten: " & objItem.TimeWritten

 WScript.Echo "User: " & objItem.User

 End If

Next

On our test system, which has three pretty full event logs, this script takes about three min-
utes to complete. Imagine running this on a dozen servers—it would take a significant amount
of time. Including a WHERE clause can restrict the query so only those events matching our

Chapter 10: Advanced WMI Scripting 265

needs are returned. It’s a simple change, as shown in Listing 10-4. This alternate version of the
script completes in just a few seconds—a marked improvement.

Listing 10-4 Revised Event Log Scanner
strComputer = "."

Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = SWBemlocator.ConnectServer(strComputer, _

 "\root\CIMV2",UserName,Password)

Set colItems = _

objWMIService.ExecQuery("Select * from Win32_NTLogEvent " & _

 "WHERE LogFIle = 'Application' AND " & _

 "EventIdentifier = 1073741925",,48)

For Each objItem in colItems

 WScript.Echo "TimeGenerated: " & objItem.TimeGenerated

 WScript.Echo "TimeWritten: " & objItem.TimeWritten

 WScript.Echo "User: " & objItem.User

Next

In this modified version, only events with the EventIdentifier value are queried, so our script
doesn’t have to run through all the events to find the right ones. Were this to run against a
remote computer, it’d save considerably more time because all the extraneous events wouldn’t
be transmitted across the network and then processed by our script.

A WHERE clause can contain more than one condition. Simply join conditions together with
Boolean operators. You can use parentheses to specify the order in which conditions are eval-
uated (the conditions nested deepest are evaluated first). For example, here’s another revision
that’ll make our event log scanner work a bit faster.

objWMIService.ExecQuery("Select * from Win32_NTLogEvent " & _

 "WHERE LogFile = 'Application' AND " & _

 "EventIdentifier = 1073741925",,48)

We specified that only events listed in the Application event log and that have the Event-
Identifier value should be returned. This allows the computer processing the query to elimi-
nate all event logs except the one specified because no other event log’s entries could match
the LogFile = 'Application' criteria. The more specific you can be in your WQL query, the faster
your query will execute, and the more efficiently your script will run.

Using the LIKE Operator

If you don’t know which value to include in a WHERE clause, Microsoft Windows XP and later
versions of Windows (including Microsoft Windows Server 2003) support a special operator
called LIKE. It takes the place of the equal sign (=) or other comparison operator in a WHERE
clause, and it allows you to specify wildcards in your criteria. The LIKE operator executes very
rapidly, making it an excellent choice for reducing query result set sizes even if you don’t have
specific criteria.

266 Part III: Advanced Scripting Techniques, Tools, and Technologies

For example, suppose you want to return a list of installed software (that is, products) with
the word Microsoft in the name. That would be difficult to do with the equals operator because
it requires a precise match. However, the LIKE operator can be used with the wildcard charac-
ter (%). Listing 10-5 is a sample that shows the LIKE operator in action. Note that the wildcard
character is included both before and after the search term Microsoft, allowing products with
Microsoft anywhere in the name to be retrieved. That is, the first wildcard character will match
any number of characters prior to the word Microsoft, and the second wildcard character will
match any number of character after the word Microsoft.

Listing 10-5 Wildcard Query
strComputer = "."

Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = SWBemlocator.ConnectServer(strComputer,"\root\CIMV2")

Set colItems = _

 objWMIService.ExecQuery("Select * from Win32_Product " & _

 "WHERE Caption LIKE '%Microsoft%'")

For Each objItem in colItems

 WScript.Echo "Caption: " & objItem.Caption

 WScript.Echo "Description: " & objItem.Description

 WScript.Echo "Name: " & objItem.Name

 WScript.Echo

Next

Note This script will work only on Windows XP computers and Windows Server 2003 com-
puters where the optional Installed Applications WMI provider (included on the Windows
Server 2003 product CD) has been installed.

Our results from this script look, in part, like this.

Caption: Microsoft IntelliType Pro 5.2

Description: Microsoft IntelliType Pro 5.2

Name: Microsoft IntelliType Pro 5.2

Caption: Microsoft .NET Framework 1.1

Description: Microsoft .NET Framework 1.1

Name: Microsoft .NET Framework 1.1

Caption: Microsoft Visio Viewer 2002

Description: Microsoft Visio Viewer 2002

Name: Microsoft Visio Viewer 2002

Caption: HighMAT Extension to Microsoft Windows XP CD Writing Wizard

Description: HighMAT Extension to Microsoft Windows XP CD Writing Wizard

Name: HighMAT Extension to Microsoft Windows XP CD Writing Wizard

Notice that products with Microsoft at the start of the name are retrieved, as well as products
that include the word Microsoft in the middle of the name.

Chapter 10: Advanced WMI Scripting 267

Note Remember that only Windows XP and later versions of Windows support the LIKE
operator. You’ll receive an error if you try to use it with unsupported operating systems. Also
remember that the computer executing the query must also support the LIKE operator. There-
fore, if you’re running the script on a Windows XP computer, and connecting to a Microsoft
Windows NT computer, the LIKE operator won’t be supported.

The LIKE operator also uses the underscore character (_) as a wildcard. Unlike the % wild-
card, which matches any number of characters, the underscore matches only one character.
For example, the expression LIKE '_icrosoft' would match Microsoft as well as microsoft and
dicrosoft, but it would not match Microsoft Office or Update for Microsoft Office.

Understanding the LIKE operator and the WHERE clause will help you produce more efficient
and flexible WMI scripts.

Using Queries and associator Classes
WMI has many associator classes. These classes don’t typically provide information in and of
themselves; instead, they are used in conjunction with two or more other classes. In the next
two sections, we’ll show you how associator classes work and how to use them.

Understanding Associations

The Win32_DependentService class represents the dependencies between various Windows
system services. The class itself has three properties:

■ The antecedent class, which is the service on which the service depends.

■ The dependent class, which is the service that depends upon the antecedent.

■ The type of dependency, which can be a value representing an unknown dependency,
other dependency, or a value indicating that the antecedent service must have com-
pleted, started, or been stopped.

One instance of the Win32_DependentService class exists for each service dependency in the
system. Figure 10-1on the next page illustrates this relationship to the Win32_Service class. In
Figure 10-1, ServiceB depends on ServiceA. The instance of the Win32_DependentService
class codifies this relationship by listing ServiceB’s instance of the Win32_Service class as
dependent, and listing ServiceA’s instance of the Win32_Service class as antecedent. Other
instances of the Win32_Service class—such as ServiceC—can exist and have no relationship
to either ServiceA or ServiceB.

268 Part III: Advanced Scripting Techniques, Tools, and Technologies

Figure 10-1 Relationship between the Win32_Service class and the Win32_DependentService class

Each instance of the Win32_Service class represents an installed service. When one service
depends upon another, an instance of the Win32_DependentService class represents that
dependency and associates the two classes with one another.

Writing Association Queries

The ASSOCIATORS OF query replaces the standard SELECT query. This special query
is designed to find all associator classes for a given class. To continue using the
Win32_DependentService class as an example, you might write a query like this.

ASSOCIATORS OF {Win32_Service.Name='MSSQLSERVER'}

WHERE AssocClass = Win32_DependentService

This query is asking for all classes that associate with the instance of Win32_Service
where the Name property is MSSQLSERVER, specifically those associated classes of the
Win32_DependentService class. This is a good query to test in Wbemtest.

1. Run Wbemtest.exe by typing wbemtest at the Start menu’s Run prompt or a command-
line prompt.

2. Click Connect and type root\cimv2 in the Namespace text box of the dialog box that
appears.

3. Click Connect again to close the dialog box.

ServiceA
(Win 32_Service)

ServiceB
(Win 32_Service)

ServiceC
(Win 32_Service)

Win 32_DependentService
ServiceB depends on

ServiceA

Dependent

Antecedent

Chapter 10: Advanced WMI Scripting 269

4. Click Query and enter the ASSOCIATORS OF query.

5. Click Apply to see the results, as shown in Figure 10-2.

Figure 10-2 Results of a WMI ASSOCIATORS OF query

Note The ASSOCIATORS OF query in the previous example does, of course, assume that
you’re running an instance of Microsoft SQL Server, or the Microsoft SQL Server Desktop
Engine (MSDE). To further explore this concept, however, you should try substituting other
service names to see what results the query returns.

The results of the query are all the Win32_Service classes that, through
Win32_DependentService, associate with the specified Win32_Service class (that is, the one
with the name MSSQLSERVER). Of course, this query only works on systems that have
Microsoft SQL Server installed. The query asks for all classes associated with a specific
instance of Win32_Service, where the association is made by the Win32_DependentService
class. This particular query returns all dependent and antecedent services of the
Win32_Service instance specified.

The Win32_DiskDriveToDiskPartition class associates instances of Win32_DiskDrive with
instances of Win32_DiskPartition. For example, suppose you were to execute a simple WMI
query that returned the caption and device ID for all disk drives attached to your system.
You’d start with something like this.

ComputerName = "."

Set wmiServices = GetObject (_

 "winmgmts:{impersonationLevel=Impersonate}!//" _

 & ComputerName)

' Get physical disk drive

Set wmiDiskDrives = wmiServices.ExecQuery (_

 "SELECT Caption, DeviceID FROM Win32_DiskDrive")

270 Part III: Advanced Scripting Techniques, Tools, and Technologies

The wmiDiskDrives variable is a collection of Win32_DiskDrive instances, so you can use a
For…Each loop to enumerate through the collection. For each Win32_DiskDrive instance, you
could retrieve the partition associated with the drive by using an ASSOCIATORS OF query.

 Set wmiDiskPartitions = wmiServices.ExecQuery _

 ("ASSOCIATORS OF {Win32_DiskDrive.DeviceID='" _

 & strEscapedDeviceID & "'} WHERE " & _

 "AssocClass = Win32_DiskDriveToDiskPartition")

This would return a collection of matching Win32_Partition instances, because
Win32_DiskDriveToDiskPartition associates Win32_DiskDrive with Win32_Partition. Yet
another associator class associates Win32_Partition with Win32_LogicalDisk, and you might
use the following query to retrieve those associated instances.

 Set wmiLogicalDisks = wmiServices.ExecQuery _

 ("ASSOCIATORS OF " _

 & "{Win32_DiskPartition.DeviceID='" & _

 wmiDiskPartition.DeviceID & "'} WHERE " & _

 "AssocClass = Win32_LogicalDiskToPartition")

Listing 10-6 utilizes these three queries. It starts by listing every drive letter in your system,
then it lists each drive’s associated partitions, and then it lists each partition’s associated logi-
cal disks.

Listing 10-6 associator Query
ComputerName = "."

Set wmiServices = GetObject (_

 "winmgmts:{impersonationLevel=Impersonate}!//" _

 & ComputerName)

' Get physical disk drive

Set wmiDiskDrives = wmiServices.ExecQuery (_

 "SELECT Caption, DeviceID FROM Win32_DiskDrive")

For Each wmiDiskDrive In wmiDiskDrives

 WScript.Echo "Disk drive Caption: " _

 & wmiDiskDrive.Caption _

 & VbCrLf & "DeviceID: " _

 & " (" & wmiDiskDrive.DeviceID & ")"

 'Backslash in disk drive deviceid

 ' must be escaped by "\"

 strEscapedDeviceID = Replace(_

 wmiDiskDrive.DeviceID, "\", "\\")

 'Use the disk drive device id to

 ' find associated partition

 Set wmiDiskPartitions = wmiServices.ExecQuery _

 ("ASSOCIATORS OF {Win32_DiskDrive.DeviceID='" _

 & strEscapedDeviceID & "'} WHERE " & _

 "AssocClass = Win32_DiskDriveToDiskPartition")

Chapter 10: Advanced WMI Scripting 271

 For Each wmiDiskPartition In wmiDiskPartitions

 'Use partition device id to find logical disk

 Set wmiLogicalDisks = wmiServices.ExecQuery _

 ("ASSOCIATORS OF " _

 & "{Win32_DiskPartition.DeviceID='" & _

 wmiDiskPartition.DeviceID & "'} WHERE " & _

 "AssocClass = Win32_LogicalDiskToPartition")

 For Each wmiLogicalDisk In wmiLogicalDisks

 WScript.Echo "Drive letter associated" _

 & " with disk drive = " _

 & wmiDiskDrive.Caption _

 & wmiDiskDrive.DeviceID _

 & VbCrLf & " Partition = " _

 & wmiDiskPartition.DeviceID _

 & VbCrLf & " is " _

 & wmiLogicalDisk.DeviceID

 Next

 Next

Next

Note Listing 10-6 is adapted from a sample in the Microsoft MSDN Library Platform SDK,
which includes developer documentation for WMI. Note that the script might not work consis-
tently on all systems, because drive-to-partition mapping is not always consistent.

Listing 10-7 is a version of Listing 10-6 that doesn’t include the Win32_LogicalDisk associator
queries. This more clearly illustrates the original association between Win32_DiskDrive and
Win32_Partition.

Listing 10-7 Revised associator Query
ComputerName = "."

Set wmiServices = GetObject (_

 "winmgmts:{impersonationLevel=Impersonate}!//" _

 & ComputerName)

' Get physical disk drive

Set wmiDiskDrives = wmiServices.ExecQuery (_

 "SELECT Caption, DeviceID FROM Win32_DiskDrive")

For Each wmiDiskDrive In wmiDiskDrives

 WScript.Echo "Disk drive Caption: " _

 & wmiDiskDrive.Caption _

 & VbCrLf & "DeviceID: " _

 & " (" & wmiDiskDrive.DeviceID & ")"

Next

272 Part III: Advanced Scripting Techniques, Tools, and Technologies

Notice that the WHERE clause of an ASSOCIATORS OF query is a bit different from a WHERE
clause in a SELECT query. In Listing 10-7, the WHERE clause is restricted to some very specific
values. We used the AssocClass property, which indicates the name of the associator class we
want the query to use; you’ll almost always use that in an ASSOCIATORS OF query. Some of
the other keywords that you can specify include:

■ ClassDefsOnly This keyword specifies that only class definitions, rather than instances,
are returned by the query. Note that this keyword is specified by itself, and not as part of
a comparison that uses the equal sign or another comparison operator.

■ RequiredAssocQualifier=qualifier This keyword indicates that the returned instances
must be associated with the source object through an association class that includes the
specified qualifier. For example, the following would require the association class to
include a qualifier named Association.

ASSOCIATORS OF {Win32_LogicalDisk.DeviceID='C:'}

 WHERE RequiredAssocQualifier = Association

■ RequiredQualifier=qualifier This keyword specifies that the returned instances include
the specified qualifier. For example, the following would return only the classes that
include a property named Locale.

ASSOCIATORS OF {Win32_LogicalDisk.DeviceID='C:'}

 WHERE RequiredQualifier = Locale

■ ResultClass=classname This keyword (which can’t be used in conjunction with Class-
DefsOnly) allows you to specify the class you want to retrieve. For example, the following
query would return instances in the Win32_Directory, Win32_ComputerSystem, and
Win32_DiskPartition classes.

ASSOCIATORS OF {Win32_LogicalDisk.DeviceID='C:'}

However, the following revision would return instances only from Win32_Directory,
which derives from the generic CIM_Directory class.

ASSOCIATORS OF {Win32_LogicalDisk.DeviceID='C:'}

 WHERE ResultClass = CIM_Directory

These keywords, when used in a query, aren’t separated by commas when you use more than
one.

ASSOCIATORS OF {Win32_LogicalDisk.DeviceID='C:'}

 WHERE ClassDefsOnly AssocClass=Win32_LogicalDiskToPatition

Note You can consult the WMI documentation to see the generic Computer Information
Model (CIM) class from which any Win32_ class is derived.

Chapter 10: Advanced WMI Scripting 273

Using References Queries

The REFERENCES OF statement can also be used in place of standard SELECT queries. You
use the REFERENCES OF statement similarly to the way you use ASSOCIATORS OF state-
ments, but in reverse. The REFERENCES OF statement retrieves all association instances that
refer to a particular source instance. Like ASSOCIATORS OF queries, it can use keywords in a
WHERE clause, although the available keywords are more limited: ClassFedsOnly,
RequiredQualifier, and ResultClass.

REFERENCES OF {Adapter="AHA-294X"} WHERE ResultClass = AdapterDriver

This returns all instances of Win32_AdapterDriver (with the specified ResultClass) associated
with the class where the adapter is AHA-294X. Here’s another example.

REFERENCES OF {Win32_NetworkAdapter.DeviceID="0"}

WHERE resultclass = Win32_NetworkAdapterSetting

requiredQualifier = Dynamic

This returns all instances of the Win32_NetworkAdapterSetting class that are set to Dynamic,
and that reference the instance of Win32_NetworkAdapter with a device ID of 0.

Using Advanced WMI Security Techniques
WMI has default settings for authentication, authentication service (NTLM or Kerberos), and
impersonation (which allows the WMI service on the remote computer to impersonate your
credentials execute your queries). In Chapter 2, we explained how to supply alternate creden-
tials for a WMI connection. However, WMI provides additional security options for specific
types of WMI activity. To use these security and impersonation options, it’s often easier to use
the SWBemLocator object, rather than connecting to WMI through the winmgmgts:// moniker.
This is because the SWBemLocator object syntax is often easier to read, especially when using
multiple options at once. A simple connection and query would look like this.

strComputer = "."

Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = SWBemlocator.ConnectServer(strComputer,"\root\CIMV2")

Set colItems = objWMIService.ExecQuery(_

 "Select * from Win32_OperatingSystem")

Before calling the ExecQuery method, however, you can modify the Security_ property of the
SWBemLocator object. The property is an SWbemSecurity object, and it has three properties:
AuthenticationLevel, ImpersonationLevel, and Privileges.

274 Part III: Advanced Scripting Techniques, Tools, and Technologies

Using the AuthenticationLevel Property

The AuthenticationLevel property determines the level of authentication performed by WMI.
The available authentication levels are:

■ 0: Default Authentication is set to whatever Windows uses as its default.

■ 1: None Authentication is not used.

■ 2: Connect Authentication occurs only during the initial connection.

■ 3: Call Authentication occurs for each call to a remote computer.

■ 4: Packet Authentication occurs for each packet sent or received.

■ 5: Packet Integrity Authentication is performed on each packet, and the integrity of
packets is verified to ensure they haven’t changed.

■ 6: Packet Privacy Authentication is performed on each packet; they are authenticated,
checked for integrity, and encrypted to help ensure privacy.

Note that you can also specify the AuthenticationLevel property when using a moniker to con-
nect to WMI.

Set objinst = GetObject("WinMgmts:{ "& _

 "authenticationLevel=pktPrivacy}" & _

 "!root/cimv2:Win32_LogicalDisk='c:'")

Using the ImpersonationLevel Property

Specifying an impersonation level allows the remote WMI service to use your credentials to
execute your queries. The available impersonation levels are:

■ 1: Anonymous Doesn’t allow impersonation of your credentials. WMI usually will not
work with this level.

■ 2: Identify Identifies you but doesn’t allow impersonation of your credentials. WMI
usually will fail with this level.

■ 3: Impersonate Allows the remote WMI service to impersonate your credentials. This
is the default on Windows 2000 and later versions.

■ 4: Delegate Allows the remote computer to impersonate you and gives your creden-
tials to other services, which can also impersonate you. This is generally unnecessary
and can be a security risk.

Note that you can also specify the AuthenticationLevel property when using a moniker to con-
nect to WMI.

Set objinst = GetObject("WinMgmts:{ "& _

 "impersonationLevel=Impersonate}" & _

 "!root/cimv2:Win32_LogicalDisk='c:'")

Chapter 10: Advanced WMI Scripting 275

Using the Privileges Property

Sometimes it’s not enough to have permissions to do whatever you want with WMI. For safety
reasons, certain security-sensitive privileges are restricted, even if your current user account
has permissions. These privileges must be specifically enabled.

The Privileges property is a SWbemPrivilegeSet object. To add a privilege, use the object’s Add-
AsString method to add a specific privilege name.

wmiService.Security_.Privileges.AddAsString "SeDebugPrivilege", True

Here are the available security privileges. Many of these privileges aren’t used frequently in
administrative scripts, but we list them all for completeness. The privileges in bold are used
most commonly.

■ SeCreateTokenPrivilege

■ SeAssignPrimaryTokenPrivilege

■ SeLockMemoryPrivilege

■ SeIncreaseQuotaPrivilege

■ SeMachineAccountPrivilege—required to create a computer account

■ SeTcbPrivilege

■ SeSecurityPrivilege—required to perform tasks such as clearing the Security event log
and other security-sensitive tasks

■ SeTakeOwnershipPrivilege—required to take ownership of an object without having
specific permissions for the object

■ SeLoadDriverPrivilege

■ SeSystemProfilePrivilege—required to gather system profile and performance
information

■ SeSystemtimePrivilege—required to set the system time

■ SeProfileSingleProcessPrivilege

■ SeIncreaseBasePriorityPrivilege

■ SeCreatePageFilePrivilege

■ SePermanentPrivilege

■ SeBackupPrivilege—required to perform backup operations

■ SeRestorePrivilege—required to perform restore operations

■ SeShutdownPrivilege—required to shut down a system locally

■ SeDebugPrivilege

276 Part III: Advanced Scripting Techniques, Tools, and Technologies

■ SeAuditPrivilege

■ SeSystemEnvironmentPrivilege

■ SeChangeNotifyPrivilege

■ SeRemoteShutdownPrivilege—required to remotely shut down a system

■ SeUndockPrivilege

■ SeSyncAgentPrivilege

■ SeEnableDelegationPrivilege

Note You must use the exact privilege string shown when using the Add method and
the SWbemPermissionSet object. For example, wmiService.Security_.Privileges.AddAsString
"SeDebugPrivilege", True

Note that you can also specify privileges when using a moniker-style connection.

Set Service = GetObject("winmgmts:{impersonationLevel=impersonate, (Debug)}")

Tip Note that in the example just shown, the privilege is Debug, not SeDebugPrivilege.
When using the moniker, you use the simplest version of the privilege string. Drop the Se and
Privilege portions of the string.

Viewing Advanced WMI Scripting in Action
We’ll end this chapter by covering one of the most requested and complex tasks that you can
perform with WMI: managing file permissions. The association between a file, its discretion-
ary access control list (DACL), the access control entries (ACEs) on that DACL, and the trust-
ees listed on the ACEs, can be complicated. WMI provides some shortcuts so you don’t have
to execute a half a dozen ASSOCIATORS OF queries to get a single file permission, but navigat-
ing the hierarchy of classes can still be confusing. For our example, we’ll write a script that
accepts a filename or folder path, and then displays the permissions associated with it. We
start by prompting for that file or folder name. Note that we’re using the Replace method to
replace any single backslashes with double backslashes. That’s a general requirement of WMI
because it uses the backslash as a special character.

Dim objFileSecuritySetting

Dim strFile

strFile = Replace(InputBox("File path and name?"),"\","\\")

Next we query the Win32_LogicalFileSecuritySetting class instance that has the specified Path
property. Note that although this class’s name says File, it works for both files and folders.

Chapter 10: Advanced WMI Scripting 277

Tip There’s a similar Win32_LogicalShareSecuritySetting class that handles shared folder per-
missions. You could use it to modify the following example relatively easily to work with shared
folders instead of files and folders.

Set objFileSecuritySetting = _

 GetObject("winmgmts:Win32_LogicalFileSecuritySetting.path='" _

 & strFile & "'")

Now we display the description of the returned instance, as well as its ControlFlags property.
That property is simply a set of bit flags, so we write a series of If…Then statements that check
whether a particular flag is on.

'FileSecuritySetting Basics

WScript.Echo objFileSecuritySetting.Description

If objFileSecuritySetting.ControlFlags And 1 Then _

 WScript.Echo " Default owner"

If objFileSecuritySetting.ControlFlags And 2 Then _

 WScript.Echo " Default group"

If objFileSecuritySetting.ControlFlags And 4 Then _

 WScript.Echo " DACL exists"

If objFileSecuritySetting.ControlFlags And 8 Then _

 WScript.Echo " Default DACL"

If objFileSecuritySetting.ControlFlags And 16 Then _

 WScript.Echo " SACL exists"

If objFileSecuritySetting.ControlFlags And 32 Then _

 WScript.Echo " Default SACL"

If objFileSecuritySetting.ControlFlags And 256 Then _

 WScript.Echo " DACL auto-inherit req"

If objFileSecuritySetting.ControlFlags And 512 Then _

 WScript.Echo " SACL auto-inherit req"

If objFileSecuritySetting.ControlFlags And 1024 Then _

 WScript.Echo " DACL auto-inherited"

If objFileSecuritySetting.ControlFlags And 2048 Then _

 WScript.Echo " SACL auto-inherited"

If objFileSecuritySetting.ControlFlags And 4096 Then _

 WScript.Echo " DACL Protected"

If objFileSecuritySetting.ControlFlags And 8192 Then _

 WScript.Echo " SACL Protected"

If objFileSecuritySetting.ControlFlags And 32768 Then _

 WScript.Echo " Self-relative"

WScript.Echo

Tip This is an excellent example of how to use VBScript’s Boolean operators. Each bit in a
byte has a value: the first bit has a value of 1, the second is 2, continuing to 4, 8, 16, 32, and
so forth, incrementing in powers of 2. To see whether the first bit is turned on, use the Flag-
Variable And 1 expression. This will return TRUE if the bit is on, or FALSE if it isn’t. Similarly,
FlagVariable And 4 will tell you whether the third bit is on (TRUE) or off (FALSE).

278 Part III: Advanced Scripting Techniques, Tools, and Technologies

Next, we ask the security setting instance to return the security descriptor (DACL) for itself.
This is a Win32_SecurityDescriptor class, and we retrieved it by using the security setting’s Get-
SecurityDescriptor method.

'security descriptor specifics

'working with a Win32_SecurityDescriptor instance

Dim intReturn, objSecDesc

intReturn = objFileSecuritySetting.GetSecurityDescriptor(objSecDesc)

The DACL also has a bit-based flag property, so we run through each bit to see which ones are
on.

WScript.Echo "Security Descriptor:"

If objSecDesc.ControlFlags And 1 Then _

 WScript.Echo " Default owner"

If objSecDesc.ControlFlags And 2 Then _

 WScript.Echo " Default group"

If objSecDesc.ControlFlags And 4 Then _

 WScript.Echo " DACL exists"

If objSecDesc.ControlFlags And 8 Then _

 WScript.Echo " Default DACL"

If objSecDesc.ControlFlags And 16 Then _

 WScript.Echo " SACL exists"

If objSecDesc.ControlFlags And 32 Then _

 WScript.Echo " Default SACL"

If objSecDesc.ControlFlags And 256 Then _

 WScript.Echo " DACL auto-inherit req"

If objSecDesc.ControlFlags And 512 Then _

 WScript.Echo " SACL auto-inherit req"

If objSecDesc.ControlFlags And 1024 Then _

 WScript.Echo " DACL auto-inherited"

If objSecDesc.ControlFlags And 2048 Then _

 WScript.Echo " SACL auto-inherited"

If objSecDesc.ControlFlags And 4096 Then _

 WScript.Echo " DACL Protected"

If objSecDesc.ControlFlags And 8192 Then _

 WScript.Echo " SACL Protected"

If objSecDesc.ControlFlags And 32768 Then _

 WScript.Echo " Self-relative"

WScript.Echo String(25,"-")

The security descriptor’s DACL property provides the actual DACL, which consists of one or
more ACEs. We assign the DACL to a variable so that we can work with it.

Dim objDACL, objTrustee, strAccount

objDACL = objSecDesc.DACL

We now go through each ACE one at a time.

'go through the ACEs on the DACL

'each is an instance of Win32_ACE

Dim objACE

For Each objACE In objDACL

Chapter 10: Advanced WMI Scripting 279

Each ACE has a trustee, which is the security account (a user or group) assigned to it. For each
trustee, we display the domain and name.

 'get trustee for this ACE - Win32_Trustee instance

 Set objTrustee = objACE.Trustee

 strAccount = objTrustee.Domain & "\" & objTrustee.Name

Then we display the type of ACE: Allow, Deny, or Audit.

 'write ACE type

 Select Case objACE.AceType

 case 0

 WScript.Echo strAccount & _

 " Allowed to:"

 Case 1

 WScript.Echo strAccount & _

 " Denied to:"

 Case 2

 WScript.Echo strAccount & _

 " Audit for:"

 End Select

The permissions being allowed, denied, or audited are stored in another bit flag, so once again
we run through each bit and display the names of the bits that are turned on, or assigned, to
the ACE.

 'write permissions

 If objACE.AccessMask And 1 Then _

 WScript.Echo " File: List Dir"

 If objACE.AccessMask And 2 Then _

 WScript.Echo " File: Add file"

 If objACE.AccessMask And 4 Then _

 WScript.Echo " File: Add Subdir"

 If objACE.AccessMask And 8 Then _

 WScript.Echo " File: Read EA"

 If objACE.AccessMask And 16 Then _

 WScript.Echo " File: Write EA"

 If objACE.AccessMask And 32 Then _

 WScript.Echo " File: Traverse"

 If objACE.AccessMask And 64 Then _

 WScript.Echo " File: Delete child"

 If objACE.AccessMask And 128 Then _

 WScript.Echo " File: Read attrs"

 If objACE.AccessMask And 256 Then _

 WScript.Echo " File: Write attrs"

 If objACE.AccessMask And 65536 Then _

 WScript.Echo " Delete"

 If objACE.AccessMask And 131072 Then _

 WScript.Echo " Read-control"

 If objACE.AccessMask And 262144 Then _

 WScript.Echo " Write-DACL"

 If objACE.AccessMask And 524288 Then _

 WScript.Echo " Write-owner"

 If objACE.AccessMask And 1048576 Then _

 WScript.Echo " Synchronize"

280 Part III: Advanced Scripting Techniques, Tools, and Technologies

The ACE also holds flags that describe the ACE’s inheritance behavior, which we display.

 'write flags

 If objACE.AceFlags And 1 Then _

 WScript.Echo " (Non-container child objects will inherit)"

 If objACE.AceFlags And 2 Then _

 WScript.Echo " (Container child objects will inherit)"

 If objACE.AceFlags And 4 Then _

 WScript.Echo " (ACE does not propagate inheritance)"

 If objACE.AceFlags And 8 Then _

 WScript.Echo " (Inherit-only ACE)"

 If objACE.AceFlags And 16 Then _

 WScript.Echo " (Inherited ACE)"

We end by displaying a line between this ACE and the next ACE.

 'separator

 WScript.Echo String(25,"-")

Next

Listing 10-8 is the entire script.

Listing 10-8 File Permissions
Dim objFileSecuritySetting

Dim strFile

strFile = Replace(InputBox("File path and name?"),"\","\\")

Set objFileSecuritySetting = _

 GetObject("winmgmts:Win32_LogicalFileSecuritySetting.path='" _

 & strFile & "'")

'FileSecuritySetting Basics

WScript.Echo objFileSecuritySetting.Description

If objFileSecuritySetting.ControlFlags And 1 Then _

 WScript.Echo " Default owner"

If objFileSecuritySetting.ControlFlags And 2 Then _

 WScript.Echo " Default group"

If objFileSecuritySetting.ControlFlags And 4 Then _

 WScript.Echo " DACL exists"

If objFileSecuritySetting.ControlFlags And 8 Then _

 WScript.Echo " Default DACL"

If objFileSecuritySetting.ControlFlags And 16 Then _

 WScript.Echo " SACL exists"

If objFileSecuritySetting.ControlFlags And 32 Then _

 WScript.Echo " Default SACL"

If objFileSecuritySetting.ControlFlags And 256 Then _

 WScript.Echo " DACL auto-inherit req"

If objFileSecuritySetting.ControlFlags And 512 Then _

 WScript.Echo " SACL auto-inherit req"

If objFileSecuritySetting.ControlFlags And 1024 Then _

 WScript.Echo " DACL auto-inherited"

If objFileSecuritySetting.ControlFlags And 2048 Then _

 WScript.Echo " SACL auto-inherited"

If objFileSecuritySetting.ControlFlags And 4096 Then _

 WScript.Echo " DACL Protected"

Chapter 10: Advanced WMI Scripting 281

If objFileSecuritySetting.ControlFlags And 8192 Then _

 WScript.Echo " SACL Protected"

If objFileSecuritySetting.ControlFlags And 32768 Then _

 WScript.Echo " Self-relative"

WScript.Echo

'security descriptor specifics

'working with a Win32_SecurityDescriptor instance

Dim intReturn, objSecDesc

intReturn = objFileSecuritySetting.GetSecurityDescriptor(objSecDesc)

WScript.Echo "Security Descriptor:"

If objSecDesc.ControlFlags And 1 Then _

 WScript.Echo " Default owner"

If objSecDesc.ControlFlags And 2 Then _

 WScript.Echo " Default group"

If objSecDesc.ControlFlags And 4 Then _

 WScript.Echo " DACL exists"

If objSecDesc.ControlFlags And 8 Then _

 WScript.Echo " Default DACL"

If objSecDesc.ControlFlags And 16 Then _

 WScript.Echo " SACL exists"

If objSecDesc.ControlFlags And 32 Then _

 WScript.Echo " Default SACL"

If objSecDesc.ControlFlags And 256 Then _

 WScript.Echo " DACL auto-inherit req"

If objSecDesc.ControlFlags And 512 Then _

 WScript.Echo " SACL auto-inherit req"

If objSecDesc.ControlFlags And 1024 Then _

 WScript.Echo " DACL auto-inherited"

If objSecDesc.ControlFlags And 2048 Then _

 WScript.Echo " SACL auto-inherited"

If objSecDesc.ControlFlags And 4096 Then _

 WScript.Echo " DACL Protected"

If objSecDesc.ControlFlags And 8192 Then _

 WScript.Echo " SACL Protected"

If objSecDesc.ControlFlags And 32768 Then _

 WScript.Echo " Self-relative"

WScript.Echo String(25,"-")

Dim objDACL, objTrustee, strAccount

objDACL = objSecDesc.DACL

'go through the ACEs on the DACL

'each is an instance of Win32_ACE

Dim objACE

For Each objACE In objDACL

 'get trustee for this ACE - Win32_Trustee instance

 Set objTrustee = objACE.Trustee

 strAccount = objTrustee.Domain & "\" & objTrustee.Name

 'write ACE type

 Select Case objACE.AceType

 case 0

 WScript.Echo strAccount & _

 " Allowed to:"

282 Part III: Advanced Scripting Techniques, Tools, and Technologies

 Case 1

 WScript.Echo strAccount & _

 " Denied to:"

 Case 2

 WScript.Echo strAccount & _

 " Audit for:"

 End Select

 'write permissions

 If objACE.AccessMask And 1 Then _

 WScript.Echo " File: List Dir"

 If objACE.AccessMask And 2 Then _

 WScript.Echo " File: Add file"

 If objACE.AccessMask And 4 Then _

 WScript.Echo " File: Add Subdir"

 If objACE.AccessMask And 8 Then _

 WScript.Echo " File: Read EA"

 If objACE.AccessMask And 16 Then _

 WScript.Echo " File: Write EA"

 If objACE.AccessMask And 32 Then _

 WScript.Echo " File: Traverse"

 If objACE.AccessMask And 64 Then _

 WScript.Echo " File: Delete child"

 If objACE.AccessMask And 128 Then _

 WScript.Echo " File: Read attrs"

 If objACE.AccessMask And 256 Then _

 WScript.Echo " File: Write attrs"

 If objACE.AccessMask And 65536 Then _

 WScript.Echo " Delete"

 If objACE.AccessMask And 131072 Then _

 WScript.Echo " Read-control"

 If objACE.AccessMask And 262144 Then _

 WScript.Echo " Write-DACL"

 If objACE.AccessMask And 524288 Then _

 WScript.Echo " Write-owner"

 If objACE.AccessMask And 1048576 Then _

 WScript.Echo " Synchronize"

 'write flags

 If objACE.AceFlags And 1 Then _

 WScript.Echo " (Non-container child objects will inherit)"

 If objACE.AceFlags And 2 Then _

 WScript.Echo " (Container child objects will inherit)"

 If objACE.AceFlags And 4 Then _

 WScript.Echo " (ACE does not propagate inheritance)"

 If objACE.AceFlags And 8 Then _

 WScript.Echo " (Inherit-only ACE)"

 If objACE.AceFlags And 16 Then _

 WScript.Echo " (Inherited ACE)"

 'separator

 WScript.Echo String(25,"-")

Next

Chapter 10: Advanced WMI Scripting 283

This technique is used for almost all permissions in WMI. Most security-related classes—
including Win32_LogicalFileSecuritySetting as well as certain Active Directory classes—offer a
GetSecurityDescriptor method that can be used as we’ve shown here. There’s also a SetSecurity-
Descriptor method, which you use to change permissions. Simply get the security descriptor,
modify it, and then pass it back to the SetSecurityDescriptor method to apply permission
changes.

Caution Just because you can do a thing with a script doesn’t necessarily mean you should
do that thing with a script. File permissions are an excellent example. Although WMI provides
everything you need to manage file permissions, using it to do so is a lot more complicated
than using a command-line tool such as Cacls.exe or Xcacls.exe, both of which can also be
scripted if you need to automate their operation.

Summary
We covered a lot of ground in this chapter. You learned how to use both ASSOCIATORS OF
and REFERENCES OF statements, as well as about some of the advanced and flexible security
techniques supported by WMI. You also learned how to refine and limit your WMI query
results by using WHERE clauses and by specifying the properties you want the query to
return. Finally, you learned how to tackle one of WMI’s toughest tasks, managing NTFS file
permissions. Hopefully, the examples in this chapter will help your WMI scripts become more
powerful and efficient.

285

Chapter 11

WMI Events

In this chapter:

Understanding WMI Events . 285

Using Notification Queries . 288

Using WMI Tools . 300

Viewing WMI Events in Action . 308

Summary . 317

Managing events in Windows Management Instrumentation (WMI) is an important skill that
will take your administrative scripting to the next level. Microsoft Windows is an event-driven
operating system. By using WMI and VBScript, we can monitor events and take action when
they occur. We’ll show you how to create WMI scripts that you can use as monitoring utilities.

Servers and desktops are dynamic systems: files are created and modified, services are started
and stopped, processes are created and destroyed, and event logs are written. As an adminis-
trator, you might want to do something when one of these actions takes place. For example,
you might want to detect when a service is started or stopped. The way a program is informed
of these actions is through events. An event is any interesting action to which a program might
want to respond. Operating system programmers and application developers determine
which events to define and how they occur. For example, a stop event is generated when a
service is stopped. When an event occurs, it is said to have fired. We can use WMI to monitor
many types of events.

Understanding WMI Events
In WMI, an event is a WMI object, so when an event fires, we can use the resulting object.
This event object is a system object, so it is prefixed with two underscores (__). Event objects
derive their base functionality from the __Event class. Because the __Event class is abstract,
event objects will be children of the __Event class. There are several types of __Event classes,
but from a scripting perspective, we will most likely use the following child classes of
__InstanceOperationEvent.

■ __InstanceCreationEvent is fired when something is created, such as a new process or an
event log entry.

■ __InstanceModificationEvent is fired when something is modified, such as a file.

286 Part III: Advanced Scripting Techniques, Tools, and Technologies

■ __InstanceDeletionEvent is fired when something is deleted, such as a file. This event
would also be fired as a process is destroyed.

Understanding Consumers

Objects that use the information from the fired events are called consumers. Without an event
consumer, events would go unnoticed. A consumer object is derived from the EventViewer-
Consumer class, which in turn is derived from the __EventConsumer system class. WMI
includes temporary and permanent consumers. A temporary consumer receives events only
as long as the consumer is running. For example, a VBScript monitoring WMI events would
generally be considered a temporary consumer. As soon as the script is terminated, event pro-
cessing ends even though events continue to fire. We will be using temporary consumers.

A permanent consumer is an application or Component Object Model (COM) object that
receives specific types of events. Developing permanent consumers is outside the scope of this
book, but there is a permanent consumer application you can run on Microsoft Windows XP
called eventtriggers.exe. You can use this consumer to monitor events written to an event log
on local or remote systems. Type eventtriggers /? and eventtriggers /create /? at a command
prompt for more information.

Tip When using eventtriggers /create with the /TK parameter, remember that it will run in
the context of the user credentials you supply. If you don’t specify any credentials, the utility
will use the System account. You can specify the credentials of the currently logged on user
when creating triggers for the local system. This is very useful when you want to have user
interaction or intervention when a specific event occurs.

Permanent event consumers need to be registered on the system to receive event notifications.
We don’t mean every remote system, just the system from which you will be monitoring.
This requires that you define a consumer instance and an event filter, which we’ll cover in a
moment. Using WMI events in VBScript doesn’t require any registration.

Understanding Notification Queries

A notification query is a query written in WMI Query Language (WQL) that specifies which
event to monitor and what information to return. These queries are called notification queries,
because you will be notified when the event occurs.

Select * from __InstanceCreationEvent

In this notification query statement, we specify to monitor the __InstanceCreationEvent type.
The query will return all properties from the __InstanceCreationEvent system class when a new
instance of any type is created.

Chapter 11: WMI Events 287

We can create a notification query, but for it to do anything, we need to execute the query,
also called subscribing to the event. We can execute a notification query synchronously, semi-
synchronously, or asynchronously. We’ll discuss these concepts in more detail later in the
chapter.

Understanding Filters

Filter instances are used to define or limit the type of events to monitor. A filter is derived from
the __EventFilter system class. Typically, filters are defined as part of the notification query
statements.

Select * from __InstanceCreationEvent WHERE TargetInstance ISA 'Win32_NTLogEvent'

In this notification query statement, we are returning all properties from the
__InstanceCreationEvent system class. However, we don’t want every instance, only a specific
type, called the TargetInstance. In this example, we want all the information when an instance
of the Win32_NTLogEvent class is created. You might think we need to use the equal sign (=)
operator and construct a filter like this.

TargetInstance='Win32_NTLogEvent'

However, in the world of WMI events, this won’t work because we are comparing class
instances. Instead, WQL provides a different operator, ISA.

TargetInstance ISA 'Win32_NTLogEvent'

This filter indicates to only perform the query when the instance is a Win32_NTLogEvent type.

Understanding Polling

To check for an event at a specific time, we can create event timers. Absolute timers check for
events at a specified date and time. This has some value, but in most cases, polling is more use-
ful. Polling is not a type of timer event, but it is timing related. Polling means checking for
some action at regular intervals, and it is accomplished by using the WITHIN clause in the
WQL statement.

Select * from __InstanceCreationEvent WITHIN 5 where TargetInstance ISA 'CIM_DATAFILE' AND

TargetInstance.drive='e:' AND TargetInstance.Path='\\temp\\'

In this query, we ask WMI to check every five seconds if any new files have been created in
E:\Temp.

Tip When setting a polling interval by using WMI Tools (discussed later in the chapter), the
value you specify is in milliseconds. In VBScript and WBEMTest, the value is in seconds.

288 Part III: Advanced Scripting Techniques, Tools, and Technologies

Some classes, such as CIM_DataFile and Win32_Process, require you to use the WITHIN
clause. If you don’t use it and it is required, you will get an error message.

Best Practices Setting a polling interval is as much an art as it is a science. If you poll every
few seconds, you get more information, but polling too often can introduce a lot of overhead.
How frequently to poll depends on your query. Because a poorly crafted query can seriously
degrade system performance, test all polling queries on non-production systems. Testing and
experience will help determine an adequate polling interval.

Using Notification Queries
Let’s start putting some of this information about WMI events together. First, we experiment
with a notification query using the WBEMTest tool. Then, we examine a script that executes a
notification query semisynchronously. Finally, we examine a script that executes a notifica-
tion query asynchronously.

Using WBEMTest

Let’s use WBEMTest to look at a notification query. We cover WBEMTest in more detail in
Chapter 12. Start WBEMTest, and click Enable All Privileges, as shown in Figure 11-1.

Figure 11-1 The main screen of the WBEMTest tool

Click the Connect button, and change the namespace to root\cimv2.

Chapter 11: WMI Events 289

Figure 11-2 Specifying connection information in WBEMTest

Click the Connect button again to redisplay the main WBEMTest screen. Notice the available
options: Asynchronous, Synchronous, and Semisynchronous. We cover asynchronous que-
ries later in this chapter. For now, accept the default of Semisynchronous.

Click the Notification Query button. In the Query dialog box, enter the following, as shown in
Figure 11-3:

Select * from __InstanceCreationEvent WHERE TargetInstance ISA 'Win32_NTLogEvent'

Figure 11-3 Entering a notification query

Click Apply to display the Query Result dialog box, as shown in Figure 11-4 on the next page.

290 Part III: Advanced Scripting Techniques, Tools, and Technologies

Figure 11-4 Query results for a notification query

In a command-prompt window, use the net stop command to stop a service. For example,
stop the alerter service or another running service. As soon as the service stops, you should
see a few entries in the Query Result dialog box, as shown in Figure 11-5.

Figure 11-5 Win32_NTLogEvent creation events detected when a service is stopped

Double-click the second entry in the list. Select the Hide System Properties check box to make
it easier to view the properties of __InstanceCreationEvent. Figure 11-6 shows the details of
__InstanceCreationEvent.

Chapter 11: WMI Events 291

Figure 11-6 Properties of __InstanceCreationEvent

Notice that the TargetInstance property is shown as an embedded object. This is the
Win32_NTEventLog object. Double-click TargetInstance to display the Property Editor dialog
box, and then click View Embedded. You should see the Object Editor for the
Win32_NTEventLog object, shown in Figure 11-7.

Figure 11-7 Object Editor for the Win32_NTEventLog object

As you explore the Win32_NTEventLog object, you will see some familiar event log properties,
such as Logfile, SourceName, Type, and Message. When you are finished exploring, close or
cancel all the open windows, and exit WBEMTest.

Executing a Notification Query Semisynchronously

As you saw in WBEMTest, the default query method is semisynchronous, which means the
query is executed and then control returns to the user pretty quickly. To execute a notification
query semisynchronously in a script, a call is made to the ExecNotificationQuery method.

292 Part III: Advanced Scripting Techniques, Tools, and Technologies

Using the semisynchronous method in a script allows any code following the query method
to execute. When using this method, we need to use a WMI scripting technique called block-
ing. When blocking is used, the script blocks (pauses) until an event occurs. When a notifica-
tion query is executed, the query returns an SWbemEventSource object. The SWbemEventSource
object has a method called NextEvent. When the NextEvent method is called, the script will
block until the next event occurs.

Set oWMI=GetObject("winmgmts:{(security)}")

strQuery="Select * from __InstanceCreationEvent WHERE TargetInstance " &_

"ISA 'Win32_NTLogEvent'"

Set oEventSrc=oWMI.ExecNotificationQuery(strQuery)

'start blocking

Set NTEvent=oEventSrc.NextEvent()

'script continues after event fires

In this snippet, a notification query is executed and returns a SWbemEventSource object. The
script pauses when the NextEvent method is called and waits for a new entry to be added to
the event log. When the event fires, it returns an object that corresponds to the TargetInstance
property in the query, in this case, a Win32_NTLogEvent. As written, the snippet will wait until
an event occurs before continuing and exiting the script.

If we wanted to detect additional event log creation events, we could add a loop to run contin-
uously or for a specified number of times. To abort the script, press Ctrl+C if you are using
CScript.exe, or end the WScript.exe task in Task Manager.

If you want to wait a specific length of time for an event, you can specify a timeout parameter
with the NextEvent method in milliseconds.

Set NTEvent=oEventSrc.NextEvent(60000)

This snippet will wait 60 seconds for the next event before timing out and continuing with the
rest of the script. Listing 11-1 demonstrates using blocking as we wait for new entries to be
written to the event log.

Listing 11-1 Block for Events
Dim oWMI,oEventSrc,NTEvent

On Error Resume Next

strComputer="."

strQuery="Select * from __InstanceCreationEvent WHERE TargetInstance " &_

"ISA 'Win32_NTLogEvent'"

'you need the security privilege to read any security events

Set oWMI=GetObject("winmgmts:{(security)}!\\"&strComputer)

If Err.number<>0 Then

 strErrMsg= strErrMsg & "Error #" & err.number & " [0x" &_

 CStr(Hex(Err.Number)) &"]" & VbCrLf

 If Err.Description <> "" Then

 strErrMsg = strErrMsg & "Error description: " & Err.Description & "."

 End If

 Err.Clear

Chapter 11: WMI Events 293

 wscript.echo strErrMsg

 wscript.quit

End If

Set oEventSrc=oWMI.ExecNotificationQuery(strQuery)

'start blocking and timeout after one minute

Set NTEvent=oEventSrc.NextEvent(60000)

logtime=NTEvent.TargetInstance.TimeGenerated

logyr = left(logtime,4)

logmo = mid(logtime,5,2)

logdy = mid(logtime,7,2)

logtm = mid(logtime,9,6)

strMsg=NTEvent.TargetInstance.ComputerName & vbcrlf

strMsg=strMsg & "Event ID: " & NTEvent.TargetInstance.EventCode &_

" Source: " & NTEvent.TargetInstance.SourceName & vbTab & logmo & "/" &_

 logdy & "/" & logyr & " [" & FormatDateTime(left(logtm,2) & ":" &_

 Mid(logtm,3,2) & ":"&Right(logtm,2),3) & "]" & VbCrLf &_

 NTEvent.TargetInstance.Message

wscript.echo strMsg

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

This script waits for the next entry to be written in the event log. Because it could be a security
event, we need to explicitly add the security privilege.

Set oWMI=GetObject("winmgmts:{(security)}!\\"&strComputer)

If we want to be more selective about the types of events to monitor, we can modify the query
to filter by logfile.

strQuery="Select * from __InstanceCreationEvent WHERE TargetInstance " &_

"ISA 'Win32_NTLogEvent' AND TargetInstance.LogFile='Security'"

In this script, we are monitoring for any event. We use the ExecNotificationQuery method to
create an event subscription.

Set oEventSrc=oWMI.ExecNotificationQuery(strQuery)

We have to make sure the script doesn’t end, or we’ll never know when an event occurs. We
set up blocking by invoking the NextEvent method with a timeout value of 60,000 millisec-
onds or 1 minute.

'start blocking and timeout after one minute

Set NTEvent=oEventSrc.NextEvent(60000)

294 Part III: Advanced Scripting Techniques, Tools, and Technologies

When the event occurs, the script continues to execute and an instance of a
Win32_NTEventlog object is available. We can use any of the properties of the object to create
a message for the user. In this script, we report back the computer name, the event ID, the
event source, a time stamp, and the event message.

strMsg=NTEvent.TargetInstance.ComputerName & vbcrlf

strMsg=strMsg & "Event ID: " & NTEvent.TargetInstance.EventCode &_

" Source: " & NTEvent.TargetInstance.SourceName & vbTab & logmo & "/" &_

 logdy & "/" & logyr & " [" & FormatDateTime(left(logtm,2) & ":" &_

 Mid(logtm,3,2) & ":"&Right(logtm,2),3) & "]" & VbCrLf &_

 NTEvent.TargetInstance.Message

wscript.echo strMsg

Executing a notification query semisynchronously and using the blocking technique is fairly
easy, but there are some limitations. Script execution is halted until the next event occurs. If
you want to capture more than one event, you must construct a loop. If you want to capture
different types of events or if you want the script to be more responsive, you need to execute
the notification query asynchronously.

Executing a Notification Query Asynchronously

Scripts and tools that make calls asynchronously are much more responsive. To see for your-
self, run through the WBEMTest steps from earlier in the chapter, but select the Asynchro-
nous option. WBEMTest is much more responsive because it isn’t waiting, and doing very
little else, for the next event.

To execute a notification query asynchronously, a call is made to the ExecNotificationQuery-
Async method. When a notification query is executed asynchronously, the script does not
block (pause) waiting for the next event to occur. Instead, WMI calls your script when the
event you subscribed to occurs. But how does your script know how to handle the call?
The answer lies with event sinks.

Using Event Sinks

An event sink, or sink, for short, is an object that gets called when an asynchronous operation
is completed. In WMI, sinks are implemented with the WbemScripting.SWbemSink object. Cre-
ating and using a sink is not especially difficult. In the following script, we create a sink and
give it a name, which traditionally ends with an underscore. You’ll see why in a moment.

Set SINK = WScript.CreateObject("WbemScripting.SWbemSink","SINK_")

We pass the name of the sink as a parameter when executing the notification query by using
ExecNotificationQueryAsync.

strQuery="Select * from __InstanceCreationEvent WHERE " &_

"TargetInstance ISA 'Win32_NTLogEvent'"

Set oWMI=GetObject("winmgmts:{(security)}")

oWMI.ExecNotificationQueryAsync SINK, strQuery

Chapter 11: WMI Events 295

This links the results of the query to a sink—any information returned will be sent to the sink.
But how does the script know when something comes back? This is accomplished by using
standard COM events such as OnObjectReady. We create a subroutine that will be called when
the specified COM event occurs. In event-based programming, when your code is informed of
the completion of some event, this is known as a callback.

'callback subroutine

'this is code to happen when we get a return from the async call

Sub SINK_OnObjectReady(NTEvent,refContext)

logtime=NTEvent.TargetInstance.TimeGenerated

logyr = Left(logtime,4)

logmo = mid(logtime,5,2)

logdy = mid(logtime,7,2)

logtm = mid(logtime,9,6)

 WScript.Echo " Event ID: " & NTEvent.TargetInstance.EventCode &_

 " Source: " & NTEvent.TargetInstance.SourceName & vbTab & logmo & _

 "/" & logdy & "/" & logyr & " [" & FormatDateTime(left(logtm,2) &_

 ":"&Mid(logtm,3,2) & ":"&Right(logtm,2),3) & "]" & vbCrlf &_

 NTEvent.TargetInstance.message

End Sub

In this subroutine, when the WMI event fires, it also fires the OnObjectReady event. The sub-
routine includes the names of the sink, SINK_, and the COM event, OnObjectReady. The
COM object returns the WMI object (remember the embedded object from WBEMTest?).
The COM object also returns a context reference (which isn’t used now but we included it
for completeness).

You’ll probably use the OnObjectReady event most often. You might also use one of the
following:

■ The OnCompleted event is fired when the asynchronous call is finished. This event
returns an integer indicating success (0) or failure (an error number), or a reference to
the WMI ERR object if the call failed.

■ The OnProgress event is fired when the asynchronous call returns an in-progress status
message. Not every object or class will support this event method; you must request it in
your asynchronous query by setting the iFlags parameter of the asynchronous call to the
wbemFlagSendStatus value. The required parameters are an integer to describe the total
number of tasks to be completed, an integer to describe the current item being pro-
cessed, a string that describes the status of the current task, and the context reference
object.

■ The Cancel event cancels the sink and any connections to the asynchronous query. It has
no parameters.

■ The OnObjectPut event is fired if the object puts or sets a value asynchronously. The
required parameters are the WMI object and the context reference object.

296 Part III: Advanced Scripting Techniques, Tools, and Technologies

Listing 11-2 uses the same event log query we’ve worked with before, but in an asynchronous
manner.

Listing 11-2 Monitor an Event Log Asynchronously
Dim oWMI,oEventSrc,NTEvent,objSINK

strComputer="."

strQuery="Select * from __InstanceCreationEvent WHERE TargetInstance " &_

"ISA 'Win32_NTLogEvent'"

'need security privilege

Set oWMI=GetObject("winmgmts:{(security)}\\" & strComputer & "\root\cimv2")

Set objSINK = wscript.CreateObject("WbemScripting.SWbemSink","SINK_")

oWMI.ExecNotificationQueryAsync objSINK, strQuery

'The script has to continue long enough for the async operation to complete.

'One way to accomplish this is to use a msgbox. If you click ok, the

'script will finish before the async operation completes and it won't

'have anywhere to display its results.

 MsgBox "Waiting for an event to happen. Do NOT press OK until you " & _

 "get your results or you won't see anything.",vbokonly+vbinformation, _

 "WMI Sink Demo"

'Cancel SINK since we no longer need it around to receive information.

objSINK.Cancel

wscript.quit

'callback subroutine

'this is code to happen when we get a return from the async Call

Sub SINK_OnObjectReady(NTEvent,refContext)

logtime=NTEvent.TargetInstance.TimeGenerated

logyr = Left(logtime,4)

logmo = mid(logtime,5,2)

logdy = mid(logtime,7,2)

logtm = mid(logtime,9,6)

 WScript.Echo " Event ID: " & NTEvent.TargetInstance.EventCode &_

 " Source: " & NTEvent.TargetInstance.SourceName & vbTab & logmo & _

 "/" & logdy & "/" & logyr & " [" & FormatDateTime(left(logtm,2) &_

 ":"&Mid(logtm,3,2) & ":"&Right(logtm,2),3) & "]" & vbCrlf &_

 NTEvent.TargetInstance.message

End Sub

Like semisynchronous queries, if the script ends before the notification is received, you’ll
never get it. You need something to keep the script alive—even something as simple as a mes-
sage box will work. This script displays a message box to keep the script running, but there is
a drawback. It’s hard to resist clicking OK much in the same way we can’t ignore a ringing
telephone.

Chapter 11: WMI Events 297

An asynchronous query to the local system is helpful if your script has other work to do or if
you want to keep your system as responsive as possible. An asynchronous query is also easier
to work with when you want to monitor several remote systems. You can connect to each
remote system and execute the asynchronous notification query. Each system will respond to
the same sink.

There’s nothing saying you can’t have multiple sinks and multiple queries in the same script.
Take a look at the script in Listing 11-3. This script checks CPU utilization every 30 seconds.
If the processor load is greater than 70 percent, a message is displayed. The script also checks
every 10 seconds to see if the Character Map program has been launched. When the Charac-
ter Map program is detected, the script terminates.

Listing 11-3 Create a Processor Query
'USAGE: cscript|wscript wmiprocessorquery.vbs server

Dim CPUSink,ProcSink,objShell

On error Resume Next

If (wscript.arguments.count=0) Then

 strMsg="Usage: " & VbCrLf

 strMsg=strMsg & "cscript|wscript processorquery.vbs server" & VbCrLf

 strMsg=strMsg & "example: cscript processorquery.vbs File02"

 wscript.echo strMsg

 wscript.quit

Else

 strSrv=wscript.arguments(0)

End If

'check every 30 seconds for processor load > 70%.

strCPUQuery="Select * from __InstanceModificationEvent WITHIN 30 WHERE " &_

"TargetInstance ISA 'Win32_Processor' AND " &_

"TargetInstance.LoadPercentage >70"

'check every 10 seconds for existence of charmap.exe process

strProcQuery="Select * from __InstanceCreationEvent WITHIN 10 WHERE " &_

"TargetInstance ISA 'Win32_Process' AND " &_

"TargetInstance.Name='charmap.exe'"

Set objShell=CreateObject("Wscript.Shell")

Set CPUSink=wscript.CreateObject("WBemScripting.SWbemSink","CPUSINK_")

Set ProcSink=wscript.CreateObject("WBemScripting.SWbemSink","PROCSINK_")

Set oWMILocal=GetObject("winmgmts://")

oWMILocal.ExecNotificationQueryAsync ProcSink,strProcQuery

If err.number<>0 Then

 objShell.Popup "Oops! There was an error creating process event sink " &_

 "locally." & vbCrlf & "Error #" &err.number & vbCrlf &_

 "Description (if available): " & vbCrlf & " " & err.description &_

 vbCrlf & "Source (If available): " & VbCrLf & " " &_

 err.source,-1,"CPU Monitoring",vbOKOnly+vbCritical

 WScript.quit

Else

298 Part III: Advanced Scripting Techniques, Tools, and Technologies

 Err.Clear

End If

Set oWMIRemote=GetObject("winmgmts://" & strSrv)

If err.number<>0 Then

 objShell.Popup "Oops! There was an error connecting to " &_

 UCASE(strSrv) & vbCrlf & "Error #" &err.number & VbCrLf &_

 "Description (if available): " & VbCrLf & " " &_

 err.description & VbCrLf & "Source (If available): " & _

 vbCrlf & " " & Err.source,-1,"CPU Monitoring",vbOKOnly+vbCritical

 wscript.quit

Else

 oWMIRemote.ExecNotificationQueryAsync CPUSink,strCPUQuery

 If err.number<>0 Then

 objShell.Popup "Oops! There was an error creating CPU sink for " &_

 UCASE(strSrv) & vbCrlf & "Error #" &err.number & vbCrlf &_

 "Description (if available): " & vbCrlf & " " &_

 err.description & vbCrlf & "Source (If available): " & _

 vbCrlf & " " & err.source,-1,"CPU Monitoring",vbOKOnly+vbCritical

 wscript.quit

 Else

 err.Clear

 End If

End If

objShell.popup "Launch CHARMAP to stop monitoring",3,"CPU Monitoring",0+32

blnLoop=True

'Check if trigger process has been run, sleeping every 5 seconds.

While blnLoop

 wscript.sleep 5

Wend

objShell.Popup "Cancelling monitoring. You can go ahead and close " &_

"the trigger application.",3,"CPU Monitoring",vbOKOnly+vbInformation

objShell.AppActivate("Character Map")

CPUSink.Cancel()

ProcSink.Cancel()

wscript.DisconnectObject(CPUSink)

wscript.DisconnectObject(ProcSink)

Set oWMILocal=Nothing

Set oWMIRemote=Nothing

Set CPUSink=Nothing

Set ProcSink=Nothing

wscript.quit

'***

Sub CPUSINK_OnObjectReady(objEvent,objContext)

strSystem=objEvent.Path_.Server

'wscript.echo "fired " & NOW

objShell.popup "Processor load is " &_

 objEvent.TargetInstance.LoadPercentage & "%" & _

vbCrlf & NOW,-1,"System - " & strSystem,vbOKOnly+vbInformation

Chapter 11: WMI Events 299

End Sub

Sub PROCSINK_OnObjectReady(objEvent,objContext)

'trigger has been detected to close out this script

 blnLoop=False

End Sub

'EOF

Important The script in Listing 11-3 requires that queried servers be running at least
Microsoft Windows 2000 SP3. Running it on older versions might not work, and it could cause
memory leaks.

Listing 11-3 uses two asynchronous queries and event sinks. The first query and sink is for the
main part of the script, which monitors CPU utilization.

'check every 30 seconds for processor load > 70%.

strCPUQuery="Select * from __InstanceModificationEvent WITHIN 30 WHERE " &_

"TargetInstance ISA 'Win32_Processor' AND " &_

"TargetInstance.LoadPercentage >70"

Tip Depending on your system, to get the CPU utilization event to fire, you might need to
decrease the load percentage.

The second query and sink is used to monitor for the existence of a process that can be used
to trigger script termination.

'check every 10 seconds for existence of charmap.exe process

strProcQuery="Select * from __InstanceCreationEvent WITHIN 10 WHERE " &_

"TargetInstance ISA 'Win32_Process' AND " &_

"TargetInstance.Name='charmap.exe'"

Note Credit for this clever technique goes to Matthew Lavy and Ashley Meggitt who sug-
gest it in their excellent book Windows Management Instrumentation (New Riders, 2002).

After the sinks are created and the queries executed, the script executes a loop until the value
for blnLoop is TRUE.

blnLoop=True

'Check if trigger process has been run, sleeping every 5 seconds.

While blnLoop

 wscript.sleep 5

Wend

300 Part III: Advanced Scripting Techniques, Tools, and Technologies

If the charmap.exe process is detected, the event for the process-monitoring sink fires and
calls back to the corresponding subroutine.

Sub PROCSINK_OnObjectReady(objEvent,objContext)

'trigger has been detected to close out this script

 blnLoop=False

End Sub

The value for blnLoop is set to FALSE, which will exit the loop and complete the script. We
then cancel the sinks and call the DisconnectObject method.

Best Practices It is always a good idea to cancel the sink and call DisconnectObject, espe-
cially when querying remote systems. VBScript and Windows Script Host do a pretty good job
of cleaning up, but it doesn’t hurt to clean up after yourself.

You can use any program you want as a trigger—you can even create your own, as Lavy and
Meggitt did. We chose Character Map because it is a little-used program that is almost univer-
sally available in all versions of Microsoft Windows.

Important Although asynchronous queries are useful, they are not without risk. The call-
back mechanism that WMI uses to connect to the sink entails that your script is waiting to hear
from somebody. It is theoretically possible for COM communication to be intercepted over the
network, and for malicious code to be inserted. We recommend setting the WMI authentica-
tion level to wbemAuthenticationLevelPktPrivacy.

Using WMI Tools
If you don’t want to create a script or don’t have time, you can use the WMI Event Registration
and WMI Event Viewer utilities that come with WMI Tools.

More Info You can download WMI Tools at Microsoft’s Web site.
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=6430F853-
1120-48DB-8CC5-F2ABDC3ED314

(This link is on the companion CD; click WMI Tools.)

Using WMI Event Registration

You use the WMI Event Registration tool to define the consumer and filter objects. When
an event fires, you can use the WMI Event Viewer to view the details of the event. Let’s walk
through an event registration. In this example, we’ll set up an event registration to detect
when new files are added to the C:\downloads folder.

Chapter 11: WMI Events 301

To start WMI Event Registration, click the WMI Event Registration shortcut on the Programs
menu. This tool must be run in Internet Explorer. If you are running Windows XP with SP2
installed, make sure that you have specified that you allow blocked content. Then you will be
prompted to connect to namespace root\CIMV2, as shown in Figure 11-8.

Figure 11-8 Connecting to a namespace in WMI Event Registration

If you want to connect to a remote machine, click the computer button and enter the
machine’s name, as shown in Figure 11-9. Be sure to change the starting namespace to
root\cimv2.

Figure 11-9 Browsing for a namespace on a remote computer

The default setting uses the current credentials, as shown in Figure 11-10.

Figure 11-10 Login credentials when connecting to WMI Event Registration

If you want to specify alternate credentials, clear the Login As Current User check box. If you
are connecting to the local system, the check box is grayed out, because you can only specify
alternate credentials for remote systems. If you click the Options button, additional authenti-
cation and privilege options are displayed, as shown in Figure 11-11 on the next page.

302 Part III: Advanced Scripting Techniques, Tools, and Technologies

Figure 11-11 Expanded login credentials when connecting to WMI Event Registration

If you are querying remote systems asynchronously, we recommend setting authentication
level to Packet Privacy. Depending on the object class you are querying, or if you will be que-
rying security logs, you must enable all privileges. After you specify your connection options,
the start page of WMI Event Registration appears, as shown in Figure 11-12.

Figure 11-12 Start page of WMI Event Registration

We are ready to create our event filter and consumer. Right-click __EventFilter, and click New
Instance. The Edit New Instance Properties dialog box appears, as shown in Figure 11-13.

Chapter 11: WMI Events 303

Figure 11-13 The Properties dialog box when creating a new filter

In the dialog box, set the following properties. Remember, the filter is really our notification
query. In this query, the C:\downloads folder is monitored every 30 seconds to see if a new
file is added.

■ Name: NewFileAdded

■ Query: Select * from __InstanceCreationEvent WITHIN 30 where TargetInstance ISA
'CIM_DATAFILE' AND TargetInstance.drive='C:' AND TargetInstance.Path='\\down-
loads\\'

■ QueryLanguage: WQL

Click OK to create the NewFileAdded filter. You can edit the instance at any time by right-
clicking the filter and selecting Edit Instance Properties.

Tip Look through the WMI Tools’ help documentation for more examples of event filters.

Now that we have a filter, we need a consumer. In the drop down box in the upper-left panel,
click Consumers. There are two types of consumers that can be created, CmdTriggerConsumer
and EventViewerConsumer, as shown in Figure 11-14 on the next page.

304 Part III: Advanced Scripting Techniques, Tools, and Technologies

Figure 11-14 Viewing consumers in WMI Event Registration

Right-click EventViewerConsumer, and select New Instance to display the Edit New Instance
Properties dialog box shown in Figure 11-15.

Figure 11-15 The Properties dialog box when creating a new event viewer consumer

Chapter 11: WMI Events 305

Set these properties as follows.

■ Description: consumer for new file events

■ Name: NewFileConsumer

■ Severity: 1

Because the local system will be receiving the event notification, the MachineName field is left
empty. Click OK to create the NewFileConsumer consumer. As shown in Figure 11-16, the New-
FileAdded filter created earlier is displayed in the right pane. Now we will bind the consumer
and filter together. Until we do so, event notification won’t happen.

Figure 11-16 Newly created consumer named NewFileConsumer

To register the NewFileAdded filter with the NewFileConsumer consumer, right-click the New-
FileAdded filter and click Register. To register, you can also click the Register (green check
mark) button in the menu bar. Figure 11-16 shows the result after the filter has been regis-
tered. From this point on, we have a permanent event consumer until we unregister the filter
from the consumer. To view the events, we will use the WMI Event Viewer utility.

Using WMI Event Viewer

To start the WMI Event Viewer, locate and click the WMI Event Viewer shortcut on the
Programs menu. When you first open the WMI Event Viewer, you see an empty screen, as
shown in Figure 11-17 on the next page, unless an event is being registered at the time.

306 Part III: Advanced Scripting Techniques, Tools, and Technologies

Figure 11-17 An empty WMI Event Viewer

Tip You can launch the WMI Event Registration tool from the WMI Event Viewer by clicking
the pen button.

Create a folder named downloads on your C:\ drive. Add a file to this folder. When a new file
is detected, the event fires and appears in the WMI Event Viewer, as shown in Figure 11-18.

Figure 11-18 WMI Event Viewer displaying information about a detected registered event

The yellow warning icon appears because we set the severity in the consumer to 1. If we had
set it to 0, a red critical icon would appear. Setting the severity to 2 means no icon is displayed.
To display event properties, double-click the event. As you can see in Figure 11-19, the target
instance is an embedded object.

Chapter 11: WMI Events 307

Figure 11-19 Properties for an event in WMI Event Viewer

To display the properties of the target instance, click the Object button. Figure 11-20 shows
the CIM_DataFile properties for the new file added to the downloads folder.

Figure 11-20 Properties for an embedded object in an event in WMI Event Viewer

Using the WMI Event Registration and WMI Event Viewer tools is a great way to monitor
events, and a useful prototyping technique for script development. You can see what type of
object is returned as well as the property values, making it much easier to create your own
scripts.

Tip You can define as many consumers and filters as you like. They will all be displayed in the
WMI Event Viewer, which is why a good consumer description is important.

308 Part III: Advanced Scripting Techniques, Tools, and Technologies

Viewing WMI Events in Action
Let’s finish this chapter by putting everything we’ve covered so far into a full-fledged script.
Listing 11-4 is a WSF script that monitors specific types of events from a specific log file and
displays the results in an Internet Explorer window. The script reads a list of computers and
creates asynchronous queries to each.

Note If you need a refresher on WSF scripts, review Chapter 3, “Windows Script Files.”

Listing 11-4 EventAlert.wsf
<?xml version="1.0" ?>

<package>

<comment>

!!!!Test in a non-production environment!!!!

</comment>

<job id="EventAlert">

 <?job error="false" debug="false" ?>

<runtime>

<description>

EVENTALERT.WSF

Monitor event logs on remote computers. You can specify the event log to

monitor, such as application or system, as well as they type of event such

as error or warning. The polling interval specifies how often to check.

This script uses WMI asynchronous notifications and will display events as

they are detected as popups.

</description>

<named helpstring="List of computers to monitor" name="File"_ required="true"

type="string"/>

<named helpstring="The number of seconds to poll" name="Poll"_

required="true" type="string"/>

<named helpstring="The log file to monitor, ie application, or security" _

name="Log" required="true" type="string"/>

<named helpstring="The event type to monitor such as warning or error"_

name="Type" required="true" type="string"/>

<named helpstring="alternate credential username" name="User"_

required="false" type="string"/>

<named helpstring="alternate credentials password" name="Password"_

required="false" type="string"/>

<example>cscript EventAlert.wsf /File:servers.txt /Poll:20 /Log:Application /Type:Error

cscript EventAlert.wsf /File:servers.txt /Poll:60 /Log:System /Type:Warning /User:Admin /

Password:P@ssw0rd

</example>

</runtime>

<object id="ie" progid="InternetExplorer.Application" events="true" _

reference="true"/>

<object id="objFSO" progid="Scripting.FileSystemObject" reference="TRUE"/>

Chapter 11: WMI Events 309

<object id="WshShell" progid="WScript.Shell" reference="TRUE"/>

<object id="objLocator" progid="WbemScripting.SWbemLocator" _

reference="TRUE"/>

<object id="objSink" progid="WBemScripting.SWbemSink" events="TRUE" _

reference="TRUE"/>

<object id="objProcSink" progid="WBemScripting.SWbemSink" events="TRUE" _

reference="TRUE"/>

<script id="Main" language="VBScript">

<![CDATA[

On Error Resume Next

If WScript.Arguments.Count<4 Then

 WScript.Arguments.ShowUsage

 WScript.Quit

End If

If WScript.Arguments.Named.Exists("File") Then

 strFile=WScript.Arguments.Named("File")

 If objFSO.FileExists(strFile)<>True Then

 WScript.Echo "Can't find " & strFile

 WScript.Quit

 End If

End If

If WScript.Arguments.Named.Exists("Poll") Then

 iPoll=WScript.Arguments.Named("Poll")

Else

 WScript.Echo "You forgot to specify a polling interval."

 WScript.Arguments.ShowUsage

 WScript.Quit

End If

If WScript.Arguments.Named.Exists("Log") Then

 strLog=WScript.Arguments.Named("Log")

Else

 WScript.Echo "You forgot to specify an event log."

 WScript.Arguments.ShowUsage

 WScript.Quit

End If

If WScript.Arguments.Named.Exists("Type") Then

 strType=WScript.Arguments.Named("Type")

Else

 WScript.Echo "You forgot to specify an event type."

 WScript.Arguments.ShowUsage

 WScript.Quit

End If

If WScript.Arguments.Named.Exists("User") Then

 strUser=WScript.Arguments.Named("User")

End If

If WScript.Arguments.Named.Exists("Password") Then

 strPassword=WScript.Arguments.Named("Password")

End If

310 Part III: Advanced Scripting Techniques, Tools, and Technologies

strQuery="Select * from __InstanceCreationEvent WITHIN " & iPoll &_

" where TargetInstance ISA " & "'Win32_NTLogEvent' AND " &_

"TargetInstance.Logfile='" & strLog & "' AND " &_

"TargetInstance.Type='" & strType & "'"

'check every 10 seconds for existence of charmap.exe process

strProcQuery="Select * from __InstanceCreationEvent WITHIN 10 WHERE " &_

"TargetInstance ISA 'Win32_Process' AND " &_

"TargetInstance.Name='charmap.exe'"

'uncomment for debugging

' WScript.Echo strQuery

'wscript.echo "connecting as " & strUser & " " & strPassword

'connect to local system and create

Set objWMILocal=GetObject("winmgmts://")

objWMILocal.ExecNotificationQueryAsync objProcSink,strProcQuery

Dim objFile

Set objFile=objFSO.OpenTextFile(strFile,ForReading)

Do While objFile.AtEndOfStream<>True

 strComputer=Trim(objFile.ReadLine)

 If TestPing(strComputer,True) Then

 'add security privilege if querying security logs

 If UCase(strLog)="SECURITY" Then

 objLocator.Security_.Privileges.AddAsString "SeSecurityPrivilege",True

 End If

 Err.Clear

 set objWMI=objLocator.ConnectServer(strComputer,"root\cimv2",_

 strUser,strPassword)

 If Err.Number<>0 Then

 WScript.Echo "Failed to connect to " & UCase(strComputer) &_

 " [Error #" & Hex(Err.Number) &" " & err.Description & "]"

 End If

 Err.Clear

 objWMI.Security_.authenticationLevel = WbemAuthenticationLevelPktPrivacy

 WScript.Echo "Connecting sink to " & strComputer

 Err.clear

 objWMI.ExecNotificationQueryAsync objSink, strQuery

 If Err.Number<>0 Then

 WScript.Echo "Asynch Query failed To " & UCase(strComputer) &_

 " [Error #" & Hex(Err.Number) & " " & err.Description & "]"

 End If

 Else

 WScript.Echo "Failed to ping " & UCASE(strComputer)

 Err.Clear

 End If

Loop

objFile.close

strTitle="Monitoring"

ie.width=630

ie.height=530

ie.top=10

ie.left=10

Chapter 11: WMI Events 311

ie.menubar=False

ie.statusbar=False

ie.resizable=True

ie.toolbar=False

ie.navigate ("About:blank")

ie.document.title=strTitle

do while ie.ReadyState<>4

Loop

ie.visible=True

ie.document.body.InnerHTML="" &_

 strQuery & "
<HR>"

 blnFlag=True

wscript.echo "Monitoring...launch CHARMAP.EXE to end."

blnLoop=True

'Check if trigger process has been run, sleeping every 5 seconds.

While blnLoop

 wscript.sleep 5

Wend

WScript.Echo "Cancelling and disconnecting sink"

objSink.Cancel

objProcSink.Cancel

wscript.DisconnectObject(objSINK)

wscript.DisconnectObject(objPROCSINK)

ie.Quit

WScript.Quit

' ---

'callback subroutines

'this is code to happen when we get a return from the async call

' ---

Sub objSINK_OnObjectReady(NTEvent,refContext)

On Error Resume Next

'define background color variables to alternate

if blnFLAG then

 strColor="#FFFFFF"

 blnFlag=False

Else

 strColor="#CCFF66"

 blnFlag=True

End If

logtime=NTEvent.TargetInstance.TimeGenerated

logyr = Left(logtime,4)

logmo = Mid(logtime,5,2)

logdy = Mid(logtime,7,2)

logtm = Mid(logtime,9,6)

strMsg=NTEvent.TargetInstance.ComputerName & " Event ID: " &_

 NTEvent.TargetInstance.EventCode &_

312 Part III: Advanced Scripting Techniques, Tools, and Technologies

 " Source: " & NTEvent.TargetInstance.SourceName & vbTab & logmo & _

 "/" & logdy & "/" & logyr & " [" & FormatDateTime(left(logtm,2) &_

 ":"&Mid(logtm,3,2) & ":"&Right(logtm,2),3) & "]" & vbCrlf &_

 NTEvent.TargetInstance.message

'you can use a popup if you'd like

' WshShell.Popup strMsg,45,NTEvent.TargetInstance.ComputerName &_

' " Event Log Alert",vbOKOnly

ie.document.body.InsertAdjacentHTML "beforeEnd","<Table border=0 " &_

"Cellpadding=0 cellspacing=2><TR><TD BGColor=" & strColor &_

 ">" & strMsg & "</TD><TR>"

End Sub

Sub OBJPROCSINK_OnObjectReady(objEvent,objContext)

'trigger has been detected to close out this script

 blnLoop=False

End Sub

' --

' Function TestPing

'

' Tests connectivity to a given name or address; returns true or False

' --

Function TestPing(sName,bPingAvailable)

On Error Resume Next

If Not bPingAvailable Then

 TestPing=False

 Exit Function

End If

Dim cPingResults, oPingResult

Set cPingResults = GetObject("winmgmts://./root/cimv2")._

ExecQuery("SELECT * FROM Win32_PingStatus WHERE Address = '" & sName & "'")

For Each oPingResult In cPingResults

 If oPingResult.StatusCode = 0 Then

 TestPing = True

 'wscript.echo " Success"

 Else

 TestPing = False

 'WScript.Echo " *** FAILED"

 End If

Next

End Function

]]>

</script>

</job>

</package>

The script takes several parameters, as defined in the run time section.

<named helpstring="List of computers to monitor" name="File"_ required="true" type="string"/>

<named helpstring="The number of seconds to poll" name="Poll"_

required="true" type="string"/>

<named helpstring="The log file to monitor, ie application, or security" _

name="Log" required="true" type="string"/>

<named helpstring="The event type to monitor such as warning or error"_

Chapter 11: WMI Events 313

name="Type" required="true" type="string"/>

<named helpstring="alternate credential username" name="User"_

required="false" type="string"/>

<named helpstring="alternate credentials password" name="Password"_

required="false" type="string"/>

The username and password parameters are optional. To run the script using current creden-
tials, you would type a command such as this.

cscript Listing11-4.wsf /File:servers.txt /Poll:20 /Log:System /Type:Error.

The script will connect to every server listed in servers.txt, establish an asynchronous query,
and check every 20 seconds for any new entries in the system log that are errors. The script
will continue to run until the charmap.exe process is detected. We first define the objects we
need for the script.

<object id="ie" progid="InternetExplorer.Application" events="true" _

reference="true"/>

<object id="objFSO" progid="Scripting.FileSystemObject" reference="TRUE"/>

<object id="WshShell" progid="WScript.Shell" reference="TRUE"/>

<object id="objLocator" progid="WbemScripting.SWbemLocator" _

reference="TRUE"/>

<object id="objSink" progid="WBemScripting.SWbemSink" events="TRUE" _

reference="TRUE"/>

<object id="objProcSink" progid="WBemScripting.SWbemSink" events="TRUE" _

reference="TRUE"/>\

We are using the WbemScripting.SWbemLocator object so that we can specify alternate creden-
tials. Notice that we can define the sink objects here by instantiating the WbemScript-
ing.SWbemSink object. You do not need to add an underscore character as part of the object
ID, but the OnObjectReady subroutine should include it.

Sub OBJPROCSINK_OnObjectReady(objEvent,objContext)

'trigger has been detected to close out this script

 blnLoop=False

End Sub

After we validate the parameters and define the variables, we define our queries. The first
query is the main one that is monitoring for new events.

strQuery="Select * from __InstanceCreationEvent WITHIN " & iPoll &_

" where TargetInstance ISA " & "'Win32_NTLogEvent' AND " &_

"TargetInstance.Logfile='" & strLog & "' AND " &_

"TargetInstance.Type='" & strType & "'"

The second query monitors the creation of the trigger process, charmap.exe, which will termi-
nate the script.

'check every 10 seconds for existence of charmap.exe process

strProcQuery="Select * from __InstanceCreationEvent WITHIN 10 WHERE " &_

"TargetInstance ISA 'Win32_Process' AND " &_

"TargetInstance.Name='charmap.exe'"

314 Part III: Advanced Scripting Techniques, Tools, and Technologies

For this query to work, we connect to the local machine and establish the asynchronous
query.

'check every 10 seconds for existence of charmap.exe process

strProcQuery="Select * from __InstanceCreationEvent WITHIN 10 WHERE " &_

"TargetInstance ISA 'Win32_Process' AND " &_

"TargetInstance.Name='charmap.exe'"

You should already know how to open a text file and read lines, so we won’t review that code.
Each computer name is read and passed to a ping function to verify network connectivity. If
the computer is “pingable,” we can create the sink.

If the user specified the security log, we need to add the security privilege to the locator object.

 If UCase(strLog)="SECURITY" Then

 objLocator.Security_.Privileges.AddAsString "SeSecurityPrivilege",True

 End If

The script connects to the remote server, sets the WMI authentication level to Packet Privacy,
and executes the asynchronous notification query. We’ve emphasized these lines for clarity.

 set objWMI=objLocator.ConnectServer(strComputer,"root\cimv2",_

strUser,strPassword)

If Err.Number<>0 Then

 WScript.Echo "Failed to connect to " & UCase(strComputer) &_

 " [Error #" & Hex(Err.Number) &" " & err.Description & "]"

 End If

 Err.Clear

 objWMI.Security_.authenticationLevel = WbemAuthenticationLevelPktPrivacy

 WScript.Echo "Connecting sink to " & strComputer

 Err.clear

 objWMI.ExecNotificationQueryAsync objSink, strQuery

 If Err.Number<>0 Then

 WScript.Echo "Asynch Query failed To " & UCase(strComputer) &_

 " [Error #" & Hex(Err.Number) & " " & err.Description & "]"

 End If

Best Practices We included error handling at critical points in the script. It is very impor-
tant to provide feedback to the user when problems occur.

Even though we are running the script from a command line, it would be nice to have a graph-
ical event viewer. We can use Internet Explorer by creating a new instance, navigating to a
blank page, and then inserting HTML text.

strTitle="Monitoring"

ie.width=630

ie.height=530

ie.top=10

ie.left=10

ie.menubar=False

Chapter 11: WMI Events 315

ie.statusbar=False

ie.resizable=True

ie.toolbar=False

ie.navigate ("About:blank")

ie.document.title=strTitle

do while ie.ReadyState<>4

Loop

ie.visible=True

ie.document.body.InnerHTML="" &_

 strQuery & "
<HR>"

The script now runs while checking every ten seconds if charmap.exe is running. If it is, then
code in the corresponding sink (explained in a moment) will execute. In order to keep the
script alive we have a simple loop.

wscript.echo "Monitoring...launch CHARMAP.EXE to end."

blnLoop=True

'Check if trigger process has been run, sleeping every 5 seconds.

While blnLoop

 wscript.sleep 5

Wend

When an event fires, the objSink_OnObjectReady subroutine is called. The code in this subrou-
tine takes the properties of the returned object and creates a message string. This string is
then included in HTML code and inserted into the Internet Explorer window.

' ---

'callback subroutines

'this is code to happen when we get a return from the async call

' ---

Sub objSINK_OnObjectReady(NTEvent,refContext)

On Error Resume Next

'define background color variables to alternate

if blnFLAG then

 strColor="#FFFFFF"

 blnFlag=False

Else

 strColor="#CCFF66"

 blnFlag=True

End If

logtime=NTEvent.TargetInstance.TimeGenerated

logyr = Left(logtime,4)

logmo = Mid(logtime,5,2)

logdy = Mid(logtime,7,2)

logtm = Mid(logtime,9,6)

strMsg=NTEvent.TargetInstance.ComputerName & " Event ID: " &_

 NTEvent.TargetInstance.EventCode &_

 " Source: " & NTEvent.TargetInstance.SourceName & vbTab & logmo & _

 "/" & logdy & "/" & logyr & " [" & FormatDateTime(left(logtm,2) &_

316 Part III: Advanced Scripting Techniques, Tools, and Technologies

 ":"&Mid(logtm,3,2) & ":"&Right(logtm,2),3) & "]" & vbCrlf &_

 NTEvent.TargetInstance.message

'you can use a popup if you'd like

' WshShell.Popup strMsg,45,NTEvent.TargetInstance.ComputerName &_

' " Event Log Alert",vbOKOnly

ie.document.body.InsertAdjacentHTML "beforeEnd","<Table border=0 " &_

"Cellpadding=0 cellspacing=2><TR><TD BGColor=" & strColor &_

 ">" & strMsg & "</TD><TR>"

End Sub

Each entry is written as an HTML table with one column and one row. We added some code
so that tables will alternate in color, making it easier to read. Figure 11-21 illustrates the result
of this script.

Figure 11-21 Sample HTML output for the script in Listing 11-4

To terminate the script, we launch Character Map. The process will be detected and code in
the corresponding sink will be executed.

Sub OBJPROCSINK_OnObjectReady(objEvent,objContext)

'trigger has been detected to close out this script

 blnLoop=False

End Sub

In this case, the blnLoop variable is set to FALSE, which will halt the While loop. We then can-
cel and disconnect the sinks and close Internet Explorer.

While blnLoop

 wscript.sleep 5

Wend

WScript.Echo "Cancelling and disconnecting sink"

objSink.Cancel

Chapter 11: WMI Events 317

objProcSink.Cancel

wscript.DisconnectObject(objSINK)

wscript.DisconnectObject(objPROCSINK)

ie.Quit

WScript.Quit

The EventAlert.wsf script combines just about everything we’ve covered in this chapter. We
have multiple asynchronous queries and sinks, a trigger application to end the script, and a
graphical event viewer.

Note We’re often asked about running scripts as a service, as you might be tempted to do.
We don’t recommend it. First of all, the script could not include any user interaction or feed-
back such as message boxes or even wscript.echo commands because there’s no user to inter-
act with. Second, if there are problems during run time, a script has very limited recovery
capabilities. However, almost everything we’ve covered about WMI events can be used for
developing a compiled application in a higher-level programming language like Microsoft
Visual Basic .NET, where it is much easier to create an application that can run as a service.

You might want to use the WMI scripts we’ve been discussing as monitoring and management
tools to run interactively on your desktop. Depending on your needs, you might find it bene-
ficial to have a dedicated XP desktop devoted to monitoring and management logged on with
administrative credentials. Just be sure it is physically secure.

Summary
WMI events can produce powerful results. We showed you how to filter or query for different
types of WMI events. We also showed you how to set up event notification by using VBScript,
WMI Tools, and WBEMTest. Spend a little time with these tools, work with the sample scripts
on the CD, and see for yourself what information can be used on your servers and desktops.

More Info For additional information on WMI events, we recommend Windows Manage-
ment Instrumentation by Matthew Lavy and Ashley Meggitt (New Riders 2002). For informa-
tion about WMI events online, visit the following Web site.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/
receiving_a_wmi_event.asp

(This link is on the companion CD; click Receiving WMI Events.)

319

Chapter 12

Better Scripting with WMI Tools

In this chapter:

Using Tools as a Scripting Shortcut. 319

Using Scriptomatic . 320

Using WMIC . 325

Using WBEMTest . 341

Using WMI Tools . 343

Comparing WMI Wizards . 349

Summary . 351

There are many freely available tools, such as WBEMTest and Scriptomatic, that can greatly
reduce the amount of time it takes to develop administrative scripts. We’ll discuss how to use
a variety of Windows Management Instrumentation (WMI)-related tools to increase your
scripting efficiency.

Most administrators are always pressed for time and have a dozen things to accomplish before
lunch. Taking time to develop scripts is often a low priority, even when the need for adminis-
trative scripts is high. Fortunately, with a few good tools, the time it takes to develop a script,
even a complicated WMI script, can be dramatically reduced. You might even find that these
applications can be valuable diagnostic and troubleshooting tools.

Using Tools as a Scripting Shortcut
The tools and utilities we cover in this chapter can reduce the amount of time it takes to create
administrative scripts in the following ways:

■ You can generate VBScript code that can be used as is, or as a foundation for your
scripts.

■ You can learn about WMI classes, objects, and properties to quickly identify the infor-
mation you need for your scripts.

■ You can test and debug WMI queries. After you know a query works, it is a simple matter
to plug it into your scripts.

■ You can test alternate credentials and privileges. If you suspect a permission or privilege
problem in your script, you can use some of these tools to validate your script’s security
context.

320 Part III: Advanced Scripting Techniques, Tools, and Technologies

Using Scriptomatic
One of the most popular scripting tools is Scriptomatic, available free from the Microsoft
Scripting Guys. With this tool, you can do the following:

■ Browse WMI namespaces

■ Browse WMI classes

■ Connect to remote systems

■ Generate script code in VBScript and other scripting languages

■ Choose the format of your script output

■ Save generated scripts

Even if your scripting ability is limited and you understand only the basics of WMI, you can
create fully functioning administrative scripts in seconds with Scriptomatic. If you are an expe-
rienced script developer, Scriptomatic-generated code can serve as a foundation for your own
script development. Copying and pasting code saves time and reduces typos.

Note If you don’t have the Scriptomatic tool, download it from the Microsoft Web site at

http://www.microsoft.com/downloads/details.aspx?FamilyID=09dfc342-648b-4119-b7eb-
783b0f7d1178&DisplayLang=en

(This link is on the companion CD; click Scriptomatic v2.0.)

Listing Classes and Namespaces

The primary function of Scriptomatic is to enumerate WMI namespaces and classes. After
you’ve found the WMI class you want, Scriptomatic will generate a script based on that class.
When you start Scriptomatic, it connects to the default WMI namespace, root\cimv2, as shown
in Figure 12-1.

As you can see in Figure 12-2, when you click the WMI Class down arrow, all the available
object classes within this namespace are displayed.

Chapter 12: Better Scripting with WMI Tools 321

Figure 12-1 Starting Scriptomatic

Figure 12-2 Displaying the WMI classes

You can also connect to other WMI namespaces by clicking the WMI Namespace down arrow,
as shown in Figure 12-3 on the next page. Depending on the system, you might see other
namespaces listed. For example, Microsoft Exchange 2003 will have the
root\MicrosoftExchangeV2 namespace.

322 Part III: Advanced Scripting Techniques, Tools, and Technologies

Figure 12-3 Listing WMI Namespaces

For most administrators, the Win32 objects in root\cimv2 are of most interest. In Figure 12-4,
the Win32_OperatingSystem class has been selected in the WMI Class drop-down list, and a
script automatically generated. Scriptomatic will generate code in several programming lan-
guages. We used the VBScript default.

Figure 12-4 Displaying Win32_OperatingSystem script

Chapter 12: Better Scripting with WMI Tools 323

Scriptomatic also includes options for handling the output of the script, which essentially
enumerates all the properties and values for all the instances of a particular class of object.
Selecting the Plain Text option will send the script output to a text file that automatically
opens in Notepad, as shown in Figure 12-5.

Figure 12-5 Displaying Win32_OperatingSystem script in Notepad

Output in HTML is shown in Figure 12-6.

Figure 12-6 Displaying Win32_OperatingSystem script in HTML

324 Part III: Advanced Scripting Techniques, Tools, and Technologies

Note The WMI Source button is used to connect to a remote system. After you are con-
nected to the remote system, you can enumerate all the WMI namespaces and objects on the
remote computer. This is very useful for exploring WMI classes that are not installed locally. For
example, Exchange 2003 has many WMI classes. By connecting to an Exchange 2003 server,
you can explore these classes without having to install Exchange 2003 locally. However, in
Scriptomatic v2.0, there is a bug in this feature. When you connect to the remote system, the
computer name changes in the generated script, but the tool is still querying the local WMI
database. The Microsoft Scripting Guys are aware of this bug and will correct it in the next
release of the tool.

Generating Scripts

Of course, you can still edit the script directly within the utility. Scriptomatic’s scripts are
really enumeration scripts. That is, they report on defined properties for a specified WMI
class. This type of reporting probably constitutes the bulk of most administrative scripting
libraries. Scriptomatic can make this easy by running a script against a list of computers.

The generated script is basically a wrapper that defaults to the local computer. At the bottom
of the tool’s interface, there is a Target Computers pane. You can manually enter a list of com-
puter names and click the Update Script button to add the names to the array defined by
arrComputers. Alternatively, if you click the Load from File button, you can specify a text file
with all the computer names you want to use. The list of target computers can be separated by
commas or returned as a simple list, as shown in Figure 12-7.

Figure 12-7 Adding a list of target computers

Chapter 12: Better Scripting with WMI Tools 325

Saving Scripts

After you have the script the way you like it, click the Save button. You will be prompted for
the script name and location. One thing Scriptomatic won’t do is add the formatting code it
uses to generate the HTML page or text file when the script is run from Scriptomatic itself. The
saved script is exactly what you see in the window. If you want to save the output to an HTML
page, a Microsoft Excel workbook, or an XML file, you have to add that code yourself.

Scriptomatic can create a fully functional WMI script that queries multiple remote systems in
literally a minute. In fact, you might find it easier to use Scriptomatic to run the script and han-
dle the special formatting like HTML. You could take a generated script, add a list of comput-
ers, and strip out all the WMI attributes you don’t want, or add a WMI query to limit the
amount of data returned. You could then save the script as we just showed you. When you are
ready to run it, start Scriptomatic and click Open. Then find your script, and click OK. Use
Scriptomatic to execute the script and generate the desired output.

Using WMIC
If you prefer to access WMI from a command prompt, WMI Command Line (WMIC) is the
tool for you. WMIC isn’t a scripting tool like Scriptomatic. In fact, Microsoft intended WMIC
to be a tool for administrators who want to leverage the power of WMI without having to write
complex VBScript code. However, because this is a command-line tool, you can still script it
with an old-fashioned batch file. We provide an example later in this chapter.

Note WMIC is available only on Microsoft Windows XP and Microsoft Windows Server 2003.
You can, however, use it to remotely connect to Microsoft Windows 2000 or even Microsoft
Windows NT 4.0 servers, if the WMI core files are installed on the target computer.

You can use WMIC to perform the following tasks:

■ Manage the local system.

■ Manage a remote system.

■ Manage multiple remote systems.

■ Use alternate credentials.

■ Format output.

Like NSLookup, you can use WMIC in interactive mode or as a single command. However,
before you can use WMIC, it must be installed. To do so, at a command prompt, type WMIC,
and press Enter. WMIC will be installed and configured in less than a minute, after which the
WMIC command prompt, wmic:root\cli>, will appear. To get WMI help from the command
prompt window, type /?.

326 Part III: Advanced Scripting Techniques, Tools, and Technologies

Connecting to Namespaces

Namespace paths are relative to the current namespace. When you launch WMIC, it connects
to the default WMI namespace, typically root\cimv2. However, you can connect to a different
namespace by typing /namespace:<namespace>. Unless you extend WMIC (a topic beyond
the scope of this book), you probably won’t need to change namespaces. We expect the
default configuration to satisfy 99 percent of your scripting needs. Plus, if you have the tech-
nical expertise to extend WMIC, you probably have the expertise to develop a script by using
VBScript.

Using Aliases

WMIC can be confusing at first because it doesn’t use the standard Win32 class names.
Instead, WMIC uses aliases that define WMI classes by function rather than by class name.
Remember, WMIC was designed for administrators who might not know the WMI class name
for an operating system (Win32_OperatingSystem), but who recognize something like OS. Typ-
ing WMIC /? in a command prompt lists the available aliases.

■ ALIAS Access to the aliases available on the local system

■ BASEBOARD Base board (also known as a motherboard or system board)
management

■ BIOS Basic input/output services (BIOS) management

■ BOOTCONFIG Boot configuration management

■ CDROM CD-ROM management

■ COMPUTERSYSTEM Computer system management

■ CPU CPU management

■ CSPRODUCT Computer system product information from SMBIOS

■ DATAFILE Data file management

■ DCOMAPP DCOM Application management

■ DESKTOP User’s desktop management

■ DESKTOPMONITOR Desktop monitor management

■ DEVICEMEMORYADDRESS Device memory addresses management

■ DISKDRIVE Physical disk drive management

■ DISKQUOTA Disk space usage for NTFS volumes

■ DMACHANNEL Direct memory access (DMA) channel management

■ ENVIRONMENT System environment settings management

■ FSDIR File system directory entry management

■ GROUP Group account management

Chapter 12: Better Scripting with WMI Tools 327

■ IDECONTROLLER IDE Controller management

■ IRQ Interrupt request line (IRQ) management

■ JOB Access to the jobs scheduled by using the schedule service

■ LOADORDER Management of system services that define execution dependencies

■ LOGICALDISK Local storage device management

■ LOGON LOGON sessions

■ MEMCACHE Cache memory management

■ MEMLOGICAL System memory management (configuration layout and availability of
memory)

■ MEMPHYSICAL Computer system’s physical memory management

■ NETCLIENT Network client management

■ NETLOGIN Network login information (of a particular user) management

■ NETPROTOCOL Protocols (and their network characteristics) management

■ NETUSE Active network connection management

■ NIC Network Interface Controller (NIC) management

■ NICCONFIG Network adapter management

■ NTDOMAIN NT domain management

■ NTEVENT Entries in the NT event log

■ NTEVENTLOG NT event log file management

■ ONBOARDDEVICE Management of common adapter devices built into the mother-
board (system board)

■ OS Installed operating system management

■ PAGEFILE Virtual memory file swapping management

■ PAGEFILESET Page file settings management

■ PARTITION Management of partitioned areas of a physical disk

■ PORT I/O port management

■ PORTCONNECTOR Physical connection ports management

■ PRINTER Printer device management

■ PRINTERCONFIG Printer device configuration management

■ PRINTJOB Print job management

■ PROCESS Process management

■ PRODUCT Installation package task management

328 Part III: Advanced Scripting Techniques, Tools, and Technologies

■ QFE Quick fix engineering

■ QUOTASETTING Setting information for disk quotas on a volume

■ RECOVEROS Information gathered from memory when the operating system fails

■ REGISTRY Computer system registry management

■ SCSICONTROLLER SCSI controller management

■ SERVER Server information management

■ SERVICE Service application management

■ SHARE Shared resource management

■ SOFTWAREELEMENT Management of the elements of a software product installed on
a system

■ SOFTWAREFEATURE Management of software product subsets of SOFTWAREELE-
MENT

■ SOUNDDEV Sound device management

■ STARTUP Management of commands that run automatically when users log onto the
computer system

■ SYSACCOUNT System account management

■ SYSDRIVER Management of the system driver for a base service

■ SYSTEMENCLOSURE Physical system enclosure management

■ SYSTEMSLOT Management of physical connection points including ports, slots and
peripherals, and proprietary connection points

■ TAPEDRIVE Tape drive management

■ TEMPERATURE Data management of a temperature sensor (electronic thermometer)

■ TIMEZONE Time zone data management

■ UPS Uninterruptible power supply (UPS) management

■ USERACCOUNT User account management

■ VOLTAGE Voltage sensor (electronic voltmeter) data management

■ VOLUMEQUOTASETTING Associates the disk quota setting with a specific disk
volume

■ WMISET WMI service operational parameters management

Chapter 12: Better Scripting with WMI Tools 329

Ironically, experienced WMI users are more likely to be confused by the aliases because it’s
not always clear to which Win32 class the alias is referring. Table 12-1 lists each alias and the
corresponding Win32 object class target.

Table 12-1 Aliases and Target Classes

Alias Where Target Class

Alias WHERE FriendlyName = '#' Select * from Msft_CliAlias

BaseBoard Select * from Win32_BaseBoard

BIOS Select * from Win32_BIOS

BootConfig Select * from
Win32_BootConfiguration

CDROM WHERE Drive='#' Select * from Win32_CDRomDrive

ComputerSystem Select * from
Win32_ComputerSystem

CPU WHERE DeviceID='#' Select * from WIN32_Processor

CSProduct Select * from
Win32_ComputerSystemProduct

DataFile WHERE Name = '#' Select * from CIM_DataFile

DCOMAPP WHERE Name='#' Select * from
WIN32_DCOMApplication

Desktop WHERE Name='#' Select * from WIN32_Desktop

DesktopMonitor WHERE DEVICEID='#' Select * from WIN32_Desktopmonitor

DeviceMemoryAddress ss Select * from
Win32_DeviceMemoryAddress

DiskDrive WHERE Index=# Select * from Win32_DiskDrive

DiskQuota Select * from Win32_DiskQuota

DMAChannel WHERE DMAChannel=# Select * from Win32_DMAChannel

Environment Select * from Win32_Environment

FSDir WHERE Name='#' Select * from Win32_Directory

Group Select * from Win32_Group

IDEController Select * from Win32_IDEController

IRQ WHERE IRQNumber=# Select * from Win32_IRQResource

Job WHERE jobid=# Select * from Win32_ScheduledJob

LoadOrder Select * from
Win32_LoadOrderGroup

LogicalDisk WHERE Name='#' Select * from Win32_LogicalDisk

LOGON Select * from Win32_LogonSession

Memcache WHERE DeviceID='#' Select * from WIN32_Cachememory

330 Part III: Advanced Scripting Techniques, Tools, and Technologies

MemLogical Select * from
Win32_LogicalMemoryConfiguration

MemPhysical Select * from
Win32_PhysicalMemoryArray

NetClient WHERE Name='#' Select * from WIN32_NetworkClient

NetLogin WHERE Name='#' Select * from
Win32_NetworkLoginProfile

NetProtocol Select * from
Win32_NetworkProtocol

NetUse WHERE LocalName='#' Select * from
Win32_NetworkConnection

NIC WHERE DeviceID=# Select * from Win32_NetworkAdapter

NICConfig WHERE Index=# Select * from
Win32_NetworkAdapterConfigura-
tion

NTDomain WHERE DomainName='#' Select * from Win32_NTDomain

NTEvent Select * from Win32_NTLogEvent

NTEventLog WHERE LogfileName='#' Select * from Win32_NTEventlogFile

OnBoardDevice Select * from Win32_OnBoardDevice

OS Select * from
Win32_OperatingSystem

PageFile Select * from Win32_PageFileUsage

PageFileSet Select * from Win32_PageFileSetting

Partition WHERE Index=# Select * from Win32_DiskPartition

Port Select * from Win32_PortResource

PortConnector WHERE ExternalReferenceDesig-
nator='#'

Select * from Win32_PortConnector

Printer WHERE Name='#' Select * from Win32_Printer

PrinterConfig WHERE Name='#' Select * from
Win32_PrinterConfiguration

PrintJob WHERE JobId=# Select * from Win32_PrintJob

Process WHERE ProcessId='#' Select * from Win32_Process

Product WHERE Name='#' Select * from Win32_Product

QFE Select * from
Win32_QuickFixEngineering

QuotaSetting Select * from Win32_QuotaSetting

Table 12-1 Aliases and Target Classes

Alias Where Target Class

Chapter 12: Better Scripting with WMI Tools 331

To get more information about a particular alias, open a command prompt window, and type
wmic <alias> /?. For example, typing wmic share /? displays the information shown on the
next page.

RecoverOS Select * from
Win32_OSRecoveryConfiguration

Registry Select * from Win32_Registry

SCSIController Select * from Win32_SCSIController

Server Select * from
Win32_PerfRawData_PerfNet_Server

Service WHERE Name='#' Select * from Win32_Service

Share WHERE Name='#' Select * from Win32_Share

SoftwareElement Select * from
Win32_SoftwareElement

SoftwareFeature Select * from Win32_SoftwareFeature

SoundDev WHERE Name='#' Select * from WIN32_SoundDevice

Startup WHERE Caption='#' Select * from
Win32_StartupCommand

SysAccount WHERE Name='#' Select * from Win32_SystemAccount

SysDriver WHERE Name='#' Select * from Win32_SystemDriver

SystemEnclosure Select * from Win32_SystemEnclosure

SystemSlot Select * from Win32_SystemSlot

TapeDrive Select * from Win32_TapeDrive

Temperature Select * from
Win32_TemperatureProbe

TimeZone Select * from Win32_TimeZone

UPS Select * from
Win32_UninterruptiblePowerSupply

UserAccount Select * from Win32_UserAccount

Voltage Select * from Win32_VoltageProbe

VolumeQuotaSetting WHERE Element = # and Setting
= #

Select * from
Win32_VolumeQuotaSetting

WMISet Select * from Win32_WMISetting

Table 12-1 Aliases and Target Classes

Alias Where Target Class

332 Part III: Advanced Scripting Techniques, Tools, and Technologies

SHARE - Shared resource management.

HINT: BNF for Alias usage.

(<alias> [WMIObject] | <alias> [<path where>] | [<alias>]

<path where>) [<verb clause>].

USAGE:

SHARE ASSOC [<format specifier>]

SHARE CALL <method name> [<actual param list>]

SHARE CREATE <assign list>

SHARE DELETE

SHARE GET [<property list>] [<get switches>]

SHARE LIST [<list format>] [<list switches>]

Most WMIC commands follow the pattern WMIC <connection options> <alias> <alias options>
<wmic verb> <wmic verb options>. We cover the WMIC syntax in more detail later in this
chapter.

Connecting to Remote Systems

You connect to remote systems with WMIC by using the /node switch. If you don’t specify a
node, WMIC defaults to the local system. You specify a single computer like this.

wmic /node:Server03

Specify a comma-separated list of computers like this.

wmic /node:Server03,App01,File02,Print01

In a text file with computer names, the names can be either comma-separated values, or in a
columnar list.

wmic /node:@servers.txt

WMIC will process your query against each system in the list.

Passing Credentials

If you want to use alternate credentials when connecting to a remote system, you can use the
/user and / password switches. The username value should be in the form of domain\user. The
value you type as a password will be displayed. There is no option for a password prompt.
Combining this feature with the previous example would produce this code snippet.

wmic /node:@servers.txt /user:"company\j-admin" /password:P@ssw0rd

Notice that we put the user name in quotation marks. If the value for any switch includes a
special character like a dash or a slash, it must be enclosed in quotation marks. If in doubt,
include quotation marks.

Chapter 12: Better Scripting with WMI Tools 333

Making Queries with list and get

Of course, the whole purpose of WMIC is to learn about a system. This is accomplished by
using the verbs list or get. Both verbs return values for the specified alias, but the information
they return and how it is returned often differs, depending on how the aliases are defined. For
example, here is the output from the wmic pagefile list command.

AllocatedBaseSize CurrentUsage Description InstallDate

Name PeakUsage Status TempPageFile

1535 223 C:\pagefile.sys 20050906105923.788062-240 C:\pagefile.sys 261

The output will have wrapped lines. Here is the output from the wmic pagefile get command.

AllocatedBaseSize Caption CurrentUsage Description

InstallDate Name PeakUsage Status

TempPageFile 1535 C:\pagefile.sys 223

C:\pagefile.sys 20050906105923.788062-240 C:\pagefile.sys 261

WMIC is looking at the same object in both commands but presenting slightly different infor-
mation. You use get to specify the properties for which you want to display values. Running
the command wmic os get caption, csdversion will return the following result.

Caption CSDVersion

Microsoft Windows XP Professional Service Pack 2

If you want to know what properties will be returned by the get command for a given alias,
type wmic <alias> get /?. The default is to return all property values.

You can find the same information for the list command by typing wmic <alias> list /?. The
results will vary, depending on the alias you specify. For example, the help output for wmic
os list /? includes the formatting options of Brief, Full, Free, and several others. Entering wmic
cpu list /? shows formatting options of Brief, Config, Full, and a few others. The primary differ-
ence between get and list is that the get verb returns every property for the alias, and the list
verb uses a predefined list of properties defined by a name, such as Brief, Full, Config, Free, or
whatever is appropriate to the alias.

You can also use a WMI WHERE query as part of your WMIC command. Simply put the con-
ditional clause in parentheses.

wmic process where (name="spoolsv.exe") list brief

This command will produce the following output.

HandleCount Name Priority ProcessId ThreadCount WorkingSetSize

180 spoolsv.exe 8 1344 13 6262784

Both get and list also have a /every switch that will run the query at scheduled intervals. The
interval you specify is in seconds.

wmic process where (name="spoolsv.exe") list brief /every:10

334 Part III: Advanced Scripting Techniques, Tools, and Technologies

This will run the command every 10 seconds and display the output to the screen. You can
press any key to end the command. You can also use the /repeat switch to execute the com-
mand every x seconds for a specified number of times.

wmic process where (name="spoolsv.exe") list brief /every:10 /repeat:6

Formatting Output

If you’ve been testing WMIC as you’ve been reading the chapter, you probably noticed how
difficult it is to read some of the output. Fortunately, there are several options for producing
more user friendly output or reports. If you are using the get verb, the easiest way to do this is
by adding /value to the end of the command.

wmic os get /value

This command will produce an easy-to-read columnar list of properties and values. If you
want only certain values to be displayed, use a command like this.

wmic os get caption,csdversion,version /value

This command will produce the following type of output.

Caption=Microsoft Windows XP Professional

CSDVersion=Service Pack 2

Version=5.1.2600

Saving Output to the Command Prompt Window

All the commands we’ve run so far have been implicitly using another global switch, /output.
This switch determines how the output is handled. The default value is StdOut, which means
that data is written to the command prompt window. If we wanted to be explicit, we could use
the command like this.

wmic /output:stdout OS get /value

Saving Output to the Clipboard

There are a few other formatting choices. Note for example, the following command, which
uses the clipboard value.

wmic /output:clipboard OS get /value

This command specifies that nothing is displayed on the screen. However, we can view the
output of the operation by opening Notepad and pasting the data stored on the clipboard.

Chapter 12: Better Scripting with WMI Tools 335

Saving Output to a File

Of course if you want to save yourself a step, you can send output directly to a file. All you have
to do is specify a filename in the command.

wmic /output:"e\logs\os audit\local.txt" OS get /value

Obviously, you will need to put any file paths that include spaces in quotation marks. When
using /output, any existing files will be overwritten. If you want to append to an existing file,
you can use /append instead of /output.

wmic /append:"e\logs\os audit\local.txt" OS get /value

Using XSL Files

Creating a file is only half the story. WMIC includes a number of transform files (.xsl) that you
can use to format the output. You will find these files at %SystemRoot%\System32\wbem.
You can specify one of these files by using the /format switch, and the resulting output will be
formatted according to the file. The following XSL files are used most commonly:

■ Textvaluelist Creates a list of properties and their values.

■ Htable Creates a horizontal HTML table that displays properties and their values.

■ Hform Creates a vertical HTML table that displays properties and their values.

■ CSV Creates a comma-separated list of properties and their values.

■ RAWXML Formats the output in XML. This is very useful when building your own XSL
files because WMIC natively uses the XML format.

These format options work with either list or get. Here are some examples you might want
to try.

wmic cpu list brief /format:textvaluelist

wmic /output:processreport.csv process list brief /format:csv

wmic /output:bios.xml bios get /format:rawxml

wmic /output:osinfo.html os list full /format:hform

wmic /output:test.html process list brief /format:htable

Figure 12-8 on the next page illustrates the result of the last command.

336 Part III: Advanced Scripting Techniques, Tools, and Technologies

Figure 12-8 Displaying the output as an HTML table

Creating Your Own XSL File

This topic is outside the scope of this book, but if you have any experience with XML and XSL,
you can create your own formatting files. You can also make a copy of one of the existing files
and then customize it to better suit your needs. In any event, the XSL file you create or modify
must be located in the %Systemroot%\System32\wbem folder. Listing 12-1 is a very simple
XSL file that we put together as a demonstration.

Listing 12-1 Demo XSL File
<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

<body bgcolor="#FFFF99">

<xsl:for-each select="COMMAND/REQUEST/COMMANDLINECOMPONENTS">

 <h3>COMPUTER SYSTEM - <xsl:value-of select="NODELIST/NODE"/></h3>

 <HR></HR>

 <I><xsl:value-of select="RESULTANTQUERY"/></I>

</xsl:for-each>

</br>
</br>

 <table border="1"><tr style="background-color:6666ff;font:10pt Tahoma;">

 <xsl:for-each select="COMMAND/REQUEST/COMMANDLINECOMPONENTS/PROPERTIES/PROPERTY">

 <th><xsl:value-of select="NAME"/></th>

 </xsl:for-each>

 </tr>

Chapter 12: Better Scripting with WMI Tools 337

 <xsl:for-each select="COMMAND/RESULTS/CIM/INSTANCE">

 <tr style="font:8pt Tahoma;">

 <xsl:for-each select="PROPERTY">

 <td><xsl:value-of select="VALUE"/></td>

 </xsl:for-each>

 </tr>

 </xsl:for-each>

 </table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

To use this file, save it to the WBEM folder with a name like basichtml.xsl. Then run a com-
mand like the following:

wmic /output:computersystem.html OS list full /format:basichtml

Open the computersystem.html file in your browser to view the results.

Note The XSL file in Listing 12-1 is designed for WMIC commands running on a single node
and using list /brief. It has not been fully tested for formatting compatibility with other WMIC
commands and aliases.

Scripting with WMIC

Because WMIC is a command-line tool, it can be incorporated into a batch file. Listing 12-2 is
an example of a batch file that uses WMIC.

Listing 12-2 WMIC in a Batch File
@echo off

::SysPeek.bat

::USAGE- syspeek [computer]

::DESC- Build HTML page of system resource usage for specified computer.

::Default html filename is computernameInfo.htm and it is created in the

::same directory you run the script from. If you don't specify a

::computer, script will default to local host.

::Information gathered:

:: Processor

:: OS

:: pagefile

338 Part III: Advanced Scripting Techniques, Tools, and Technologies

:: memory

:: logical drives

:: services

:: processes

::IMPORTANT NOTES- This script uses a command line version of WMI that is

::only available on Windows XP and 2003 platforms. Before you can run the

::script you must install WMIC. Open a command prompt and type 'WMIC'

::which will start the installation. When it is finished you will have an

::interactive prompt (wmic:root\cli>). Type 'exit'. You can now run this

::script. The computer you are querying doesn't need WMIC but it must be

::WMI-enabled.

::You must have appropriate credentials on the target computer. You can

::specify alternate credentials, but you will need to use the /USER and

::/PASSWORD global switches. Run wmic /? at a command prompt to see help

::screens.

::You can build your own format files (.xsl) if you understand XML. The

::files are found in %systemroot%\system32\wbem.

:Top

::script version used in output

set zver=v2.0

 if "%1"=="" goto :Local

 set zSrv=%1

 goto :Main

:Local

 set zSrv=%computername%

:Main

 echo Getting system resource information for "%zSrv%"

::Define file for html output

 set zOutput=%zSrv%-Info.htm

::delete file if it already exists

 if exist %zOutput% del %zOutPut% >NUL

::delete error log if it previously exists

 if exist %zSrv%-Error.log del %zSrv%-Error.log >NUL

::build a shell html file. Not required but I wanted to try.

 echo ^<html^> >> %zOutput%

 echo ^<body^> >> %zOutput%

 echo ^<H3^>^^<P align=Center^>%zSrv%^<BR^>

 >>%zOutput%

 echo System Resources Information^</Font^>^</H3^>^</P^> >>%zOutput%

 echo ^<HR^> >>%zOutput%

 echo ^</html^> >> %zOutput%

 echo ^</body^> >> %zOutput%

::verify connectivity and WMI compatibility

wmic /node:"%zSrv%" os list brief 1>NUL 2>> %zSrv%-Error.log

if errorlevel=0 goto :Gather

Chapter 12: Better Scripting with WMI Tools 339

echo ^^<B^> OOPS!! ^</P^>>> %zOutPut%

echo Can't verify connectivity to or WMI compatibility with "%zSrv%" ^</P^>

 >> %zOutPut%

for /f "tokens=*" %%i in (%zSrv%-Error.log) do @echo %%i ^<br^> >>%zoutPut%

echo ^</Font^>^</B^> ^</P^> >> %zOutPut%

goto :Cleanup

:Gather

::start gathering information. WMIC command must be on one line.

 echo OS...

 echo ^^<H3^>^<B^>^<I^>Operating System^</Font^>

 ^</H3^>^</B^>^</I^> >> %zOutPut%

 wmic /node:"%zSrv%" /append:"%zOutPut%" OS get Caption,Version,

 CSDVersion,installDate,LastBootUpTime,Status,WindowsDirectory

/format:hform.xsl >NUL

 echo processor...

 echo ^^<H3^>^<B^>^<I^>Processors^</Font^>

^</H3^>^</B^>^</I^> >> %zOutPut%

 wmic /node:"%zSrv%" /append:"%zOutPut%" cpu get deviceID,name,

 addresswidth,currentclockspeed,l2cachesize,loadpercentage

/format:htable.xsl >NUL

 echo memory...

 echo ^^<H3^>^<B^>^<I^>Memory^</Font^>

 ^</H3^>^</B^>^</I^> >> %zOutPut%

 wmic /node:"%zSrv%" /append:"%zOutPut%" memlogical get

AvailableVirtualMemory, TotalVirtualMemory, TotalPhysicalMemory,

TotalPageFileSpace /format:hform.xsl >NUL

 echo pagefile...

 echo ^^<H3^>^<B^>^<I^>PageFile^</Font^>

^</H3^>^</B^>^</I^> >> %zOutPut%

 wmic /node:"%zSrv%" /append:"%zOutPut%" pagefileset get name, initialsize,

 maximumsize /format:hform.xsl >NUL

 wmic /node:"%zSrv%" /append:"%zOutPut%" pagefile get Caption,

CurrentUsage, PeakUsage, InstallDate /format:hform.xsl >NUL

 echo logical drives...

 echo ^^<H3^>^<B^>^<I^>Drive

Information^</Font^>^</H3^>^</B^>^</I^> >> %zOutPut%

 wmic /node:"%zSrv%" /append:"%zOutPut%" logicaldisk where drivetype=3 get

 name, size, freespace, compressed, filesystem /format:htable.xsl >NUL

 echo process...

 echo ^^<H3^>^<B^>^<I^>Processes^</Font^>^</H3^>^</B^>^</I^> >>

%zOutPut%

 wmic /node:"%zSrv%" /append:"%zOutPut%" process list brief

/format:"htable.xsl":"sortby=Name" >NUL

 echo service...

 echo ^^<H3^>^<B^>^<I^>Services^</Font^>

^</H3^>^</B^>^</I^> >> %zOutPut%

 wmic /node:"%zSrv%" /append:"%zOutPut%" service where

startmode!="disabled" get pathname, state, startmode, displayname,

processid /format:"htable.xsl":"sortby=State" >NUL

340 Part III: Advanced Scripting Techniques, Tools, and Technologies

:Cleanup

 echo ^<I^>^^<BR^>%zver% >>%zOutput%

 date /t >>%zOutput%

 time /t >>%zOutput%

 echo - %username% ^</I^>>>%zOutput%

 echo Open %zOutPut% to view results

 Start %zOutPut%

 if exist %zSrv%-Error.log del %zSrv%-Error.log >NUL

 set zSrv=

 set zOutput=

 set zVer=

::EOF

Note In this batch file, each echo and wmic command is on a single line. For code listing
purposes some lines break. The script file on the CD is properly formatted.

This batch file builds an HTML page with WMI information about a single computer. You can
specify a computer name as a parameter at run time. If you don’t, the script defaults to the
local system. The script uses the /output and /append switches to build a file. It then runs a
series of WMIC commands, appending the results to the file. We use the htable.xsl file to for-
mat the results. Figure 12-9 gives you an idea of the output from the script.

Figure 12-9 Viewing the Listing 12-2 output

Chapter 12: Better Scripting with WMI Tools 341

As you can see, you can produce a fairly complete system report with WMI information, with-
out writing a single line of VBScript. There is much, much more to WMIC, but we’ll leave that
for you to discover on your own.

More Info You can learn more about WMIC by searching in the Help and Support Center
on a Windows XP desktop. There is also a help file, wmic.chm, located in the Windows\Help
folder. You can also visit the following Web sites:

http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/featusability
/wmic.mspx

http://support.microsoft.com/kb/290216/EN-US/

(These links can be found on the companion CD; click WMIC Introduction and A Description of
WMIC, respectively.)

Using WBEMTest
In Chapter 11, we demonstrated how to use WBEMTest to work with WMI event notification.
We believe WBEMTest’s primary purpose is as a query validation tool. If your WMI query
works in WBEMTest and returns the information you are expecting, it should work in your
script.

Connecting to a Namespace

Start WBEMTest by clicking the Start menu, clicking Run, and then typing wbemtest in the
command prompt window. You will need to connect to a namespace by clicking the Connect
button. Even though you might be tempted to accept the default, you must change it to
root\cimv2 if you want to work with the Win32 object classes.

Tip If you want to connect to a remote system, enter \\servername\root\cimv2.

Enabling Privileges

As we explained in Chapter 11, “WMI Events,” to enable privileges to, for example, read secu-
rity logs or shut down remote systems, you must select the Enable All Privileges check box
before you click the Connect button. If you encounter errors running a WBEMTest query, you
might need to select that check box and then reconnect.

Enabling Impersonation

The Connect dialog box includes an option to specify an impersonation level. Remember,
WMI works by impersonating the user and executing commands. This means a user can’t
access any system resources or information without the appropriate permissions. You should
accept the default setting.

342 Part III: Advanced Scripting Techniques, Tools, and Technologies

Enabling Authentication

The authentication level refers to how communication is handled between systems. If you are
only connecting to the local system, you can accept the default because no packets are leaving
the computer. Otherwise, you can select an appropriate level of security. Packet privacy pro-
vides the highest level.

More Info You can learn more about authentication levels, including how to set them in
VBScript, at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/
setting_the_default_process_security_level_using_vbscript.asp. (This link is also on the compan-
ion CD; click WMI Authentication Levels.)

Enabling Authority

If you specify alternate credentials, WMI will use NTLM for user authentication. Don’t con-
fuse this with the authentication level we just discussed. If you leave the Authority field blank
and need to enter alternate credentials, use the form domain\username. If you want to explic-
itly use NTLM, you need only the username. WMI will assume that the computer you are run-
ning WBEMTest on and the remote system are in the same domain.

Alternatively, you can use Kerberos, in which case the format for authority is Kerberos:
<domain>\computername. The domain name should be the fully qualified name of your Active
Directory domain, and the computer name should be the name of the remote system. Figure
12-10 shows a WBEMTest Connect dialog box connecting to a remote system, APP01, using
alternate credentials and Kerberos authentication.

Figure 12-10 Connecting to a remote system with WBEMTest Connect

Chapter 12: Better Scripting with WMI Tools 343

Enumerating Instances

After you are connected, click the Query button, enter a WMI query like Select * from
win32_physicalmemory, and click Apply. WBEMTest will execute the query and return a list of
all instances. Double-click one of the instances to open the object editor window and display
all the object properties and values for that instance. This verifies that your query syntax is
correct and shows you what type of information is available. You might want to refine your
query to something like Select DeviceLocator,Capacity,Speed from win32_physicalmemory and
run it in WBEMTest to verify you have the right WMI property names.

Tip When reviewing object properties, select the Hide System Properties check box. This will
hide the class and system properties and display only the object properties.

As you begin to write more complex WMI queries and scripts, you will find that WBEMTest is
a valuable tool in administrative script development.

Tip Some queries, like Select DeviceLocator,Capacity,Speed from win32_physicalmemory will
return results like Win32_PhysicalMemory=<no key>. When you double-click the instance, the
object editor window still opens. This type of result simply reflects that the query did not
include the key index property. The lack of a key index has no effect on your query or the
results.

Using WMI Tools
We discussed the Event Viewer and Registration Tool in Chapter 11, so in this chapter, we give
you an overview of two more WMI tools: CIM Studio and the WMI Object Browser.

Using CIM Studio

CIM Studio is a Web page with ActiveX components that allow you to view information in and
about the CIM repository, where all WMI information is stored or generated. You must open
CIM Studio in Internet Explorer and allow blocked content if running Windows XP Service
Pack 2.

Connecting to a Namespace

When you first launch CIM Studio, you are prompted for a namespace. Unless you are work-
ing with a special WMI namespace, such as for Exchange 2003, you should accept the default
of root\cimv2, as shown in Figure 12-11 on the next page.

344 Part III: Advanced Scripting Techniques, Tools, and Technologies

Figure 12-11 Connecting to a namespace

If you want to connect to a different namespace, click the computer icon next to the
namespace field in the connection dialog box. Make sure that root is entered as the starting
namespace, and click Connect. The Browse for Namespace dialog box appears, as shown in
Figure 12-12.

Figure 12-12 Browsing to namespaces

Double-clicking a namespace will connect you to that namespace.

Connecting to Remote Computers

We typically use CIM Studio to work with the local CIM repository. You can also connect to
remote machines and view their CIM repository and WMI objects. When you browse to the
namespace, you can enter a remote computer name. CIM Studio defaults to the local system.

Using Alternate Credentials

If you specify a remote system, you have the option of using alternate credentials. After you
click Connect, clear the Login as Current User check box.

Note When connecting to the local system, the Login as Current User check box is dimmed
because you can’t specify alternate credentials for the local system, and CIM Studio is smart
enough to not let you try. WBEMTest will let you enter alternate credentials for a local connec-
tion, and then give you an error when you try to connect.

If you want to specify additional connection properties, such as authentication level, author-
ity, and privileges, click the Options button. Then follow the same guidelines that we outlined

Chapter 12: Better Scripting with WMI Tools 345

for WBEMTest earlier. If your connection succeeds, a page similar to the one shown in Figure
12-13 will appear.

Figure 12-13 Connecting with CIM Studio

Searching for Classes

Click or expand an element in the left pane to display its classes, properties, methods, and
associations in the right pane. To search for WMI classes, click the binoculars button at the
top of the left pane. You don’t have to enter the full name of the class in the Search for Class
dialog box. Figure 12-14 shows the results returned on a search for any class with the word
“display” in the name.

Figure 12-14 Searching for a class

346 Part III: Advanced Scripting Techniques, Tools, and Technologies

Click the class you want, and click OK. The CIM Studio page is redisplayed with the selected
class highlighted. As usual, the right pane shows the classes’ properties, methods, and associ-
ations.

Returning Instances

Now that you know property names that can help you develop a script, you might also want
to know what instances of the class exist on the computer to which you’re connected. To
return all the instances of a particular class, click the Instances button, which is immediately
to the right of the disk button in the right pane. If you position your mouse pointer over a but-
ton, a ScreenTip will appear informing you of each button’s name.

When you click the Instances button, all the instances of that class that exist on the computer
you are connected to will be listed in the right pane. Double-click one of the instances to dis-
play the instance with populated values, as shown in Figure 12-15.

Figure 12-15 Returning an instance

Click the Associations tab in the right pane to see the relationship between associated classes.
Double-click one of the connected graphics to display that class instance in CIM Studio.

Running Queries

CIM Studio also includes a WMI query feature. To run a query, click the WQL (WMI Query
Language) button to the left of the question mark button. In the Query dialog box, enter any
type of WMI query in the Query pane, just as you would in WBEMTest. Click the Execute but-
ton to run the query. If any instances are found, double-click them to view details. One advan-
tage with CIM Studio is that you can save your queries.

Chapter 12: Better Scripting with WMI Tools 347

Using WMI Object Browser

CIM Studio is used to browse WMI classes, although you can also use it to return class
instances on a specified computer. To simplify the process and explore all the WMI objects on
a computer, use the WMI Object Browser.

You connect to local and remote systems and change namespaces the same way you do in
CIM Studio. When you use the WMI Object Browser to connect to the default namespace on
the local computer, a page similar to the one shown in Figure 12-16 will appear.

Figure 12-16 Launching WMI Object Browser

Notice that you don’t have to look for instances; they are immediately apparent. If you expand
the tree in the left pane, you will see all the WMI components, which you can further expand
to see the underlying WMI object.

For example, expand Win32_SystemServices.PartComponent to reveal Win32_Service. When you
attempt to expand Win32_Service, a WMI query is launched to return all instances of the
selected class, as shown in Figure 12-17 on the next page.

348 Part III: Advanced Scripting Techniques, Tools, and Technologies

Figure 12-17 Returning instances in the WMI Object Browser

As with CIM Studio, you can double-click an instance in the right pane to display WMI
properties for that specific instance. Click the binoculars button at the top of the left pane
to browse for instances of other classes. Figure 12-18 shows the result of searching for
Win32_Processor.

Figure 12-18 Viewing Win32 Processor Results

Chapter 12: Better Scripting with WMI Tools 349

The WMI Object Browser is an excellent tool for seeing how all the various elements and com-
ponents of WMI work together. Keep in mind that just because a class is listed, that doesn’t
mean there is an instance on your computer. A message of No Instances Available is not
unusual.

Comparing WMI Wizards
A few commercial script editors include a WMI wizard to help speed code development. Even
with minimal WMI experience, these wizards can help you produce fully functioning scripts,
much as Scriptomatic does. Let’s take a look at the WMI wizards in AdminScriptEditor by
iTripoli and Sapien’s PrimalScript. We don’t intend to pass judgment on which is the better
product, only to demonstrate these features and point out some differences.

AdminScriptEditor’s WMI Wizard is located in the right pane of the application. To use the
wizard, first create a blank VBScript file. The WMI Wizard lets you browse all the available
Win32 classes on the local computer. There doesn’t appear to be a way to connect to a remote
system, or a way to connect to any namespace other than root\cimv2. When you select a class,
the appropriate properties are displayed in the middle of the panel. Figure 12-19 shows the
WMI Wizard and its generated code.

Figure 12-19 Viewing the AdminScriptEditor WMI Wizard

Specify which properties you want reported by selecting the appropriate check box in the left
pane. AdminScriptEditor displays a sample value when you select a property. If you want
more information about a specific class, clicking the WMI Help button launches your Web
browser and loads the MSDN WMI page about the selected class.

350 Part III: Advanced Scripting Techniques, Tools, and Technologies

The wizard uses the winmgmt moniker and a select query. If you want a more selective query,
clear the Always Use Wildcard check box. Usually, the generated code will echo the WMI
property and its value, but if you just want the value, clear the Describe Properties check box.

On the Conditionals tab, you can build a conditional WHERE clause for the query based on
the selected properties. You don’t have to do much typing, simply select the property and an
operator, and type in your constraint. Figure 12-20 illustrates this with the Win32_Process
class. You can also see the finished script in the left pane.

Figure 12-20 Creating a conditional clause

When you are satisfied with your selections, click the Show button on the Output tab to dis-
play a code preview. Clicking Insert will generate your script which you can run as-is, or mod-
ify further.

You can use the AdminScriptEditor WMI Wizard to produce some very specific WMI code,
although there is no support for remote systems or remote credentials. You could easily mod-
ify the code to connect to a remote system, but adding alternate credentials would require
major revisions.

PrimalScript takes a slightly different approach to their WMI Wizard. You access the wizard
from the Script menu. Like AdminScriptEditor, the wizard defaults to the Win32 classes in the
local root\cimv2 namespace. However, you can specify a server name or a different
namespace at the bottom of the WMI Wizard. There are also options to enter an alternate
username and password.

Selecting a class will generate a script that enumerates all the properties of that class. You can
specify whether you want to use JScript of VBScript. You’ll notice that PrimalScript uses the

Chapter 12: Better Scripting with WMI Tools 351

WbemScripting.SWbemLocator object instead of the winmgmt moniker. Not only does this
allow for alternate credentials, it also provides PrimalSense support for the object, which is
Sapien’s version of Intellisense. Figure 12-21 shows the PrimalScript WMI Wizard and its gen-
erated code for the Win32_DiskPartition class.

Figure 12-21 Viewing the PrimalScript WMI Wizard

You can make simple script edits in the wizard, such as deleting or adding commenting to
lines. Click the Copy button to copy the script to the clipboard, or if you have a file open in
PrimalScript, you can use the Insert button to insert the code directly into your script. As
with AdminScriptEditor, you have a fully functioning script or the basis for your own
work all within minutes without having to type a single line of code.

The PrimalScript wizard lacks the granularity of the AdminScriptEditor, but it allows for con-
nections to remote systems and other namespaces. In either case, WMI script development
time and effort can be reduced dramatically.

Summary
To truly advance your scripting, you need to have a well-equipped toolbox. Fortunately there
are many WMI-related tools that you can add for free or for a small investment. In this chapter,
we reviewed a number of WMI-related tools that can help educate you about WMI and dra-
matically improve your scripting efficiency. We showed you how to use Scriptomatic to create
WMI scripts and execute them as wrappers for multiple machines. We introduced you to
WMIC, which lets you execute WMI queries from a command line. We showed you how
WBEMTest can be used for query testing, and demonstrated how to use WMI Tools to explore
the CIM repository. Although WMI Tools don’t generate any code, they will help you better
understand how WMI works. Finally, we explored the WMI wizards in a few commercial
script editors. These wizards can cut your script development time to literally a minute and
require almost no typing.

353

Chapter 13

Advanced Scripting in
Windows XP and Windows
Server 2003

In this chapter:

Using New and Discontinued WMI Classes . 355

Using the Win32_PingStatus Class . 356

Configuring the Windows Firewall . 359

Using Disk Quota Management . 364

Using the DNS Provider . 365

Using Active Directory Replication and Trusts . 371

Using Internet Information Services 6.0. 374

Managing Printing. 381

Using Windows Update Services . 385

Summary . 389

Microsoft Windows XP and Microsoft Windows Server 2003 introduced a wide variety of new
management capabilities, particularly through new WMI classes. We’ll take a look at some of
the most useful of these, and show you some sample scripts that can make administrative
tasks faster and easier.

Microsoft Windows 2000 created an enormous surge of interest in Windows administrative
scripting. It was the first version of Windows to include Windows Management Instrumenta-
tion (WMI), and that created tremendous new capabilities for scripting languages like
VBScript. Microsoft responded to administrators’ newfound enthusiasm for scripting by
including even more capabilities in Windows XP and Windows Server 2003.

Note Some of the topics we’ll cover in this chapter—such as Active Directory and Internet
Information Services scripting—could easily fill a book on their own. We’re not trying to pro-
vide comprehensive coverage of them here; instead, we’re simply showing you what’s available.

354 Part III: Advanced Scripting Techniques, Tools, and Technologies

It’s important to note that the scripts in this chapter aren’t all intended to be complete admin-
istrative scripts. In fact, most of them are as short as possible to make as clear as possible how
the capabilities work. However, most of the scripts in this chapter can easily be made more
useful by adding them into a wrapper. For example, Listing 13-1 shows a wrapper script that
reads computer names from a text file.

Listing 13-1 Read Names from a File
'Create a FileSystemObject

Set oFS = _

 CreateObject("Scripting.FileSystemObject")

'Open a text file of computer names

'with one computer name per line

Set oTS = oFS.OpenTextFile("c:\computers.txt")

Set oTSOut = oFS.CreateTextFile("c:\errors.txt")

'go through the text file

Do Until oTS.AtEndOfStream

 'get next computer

 sComputer = oTS.ReadLine

 On Error Resume Next

 '***MAKE CONNECTION***

 If Err <> 0 Then

 oTSOut.WriteLine "Error on " & sComputer & _

 ":" & Err.Number & ", " & Err.Description

 Else

 On Error Goto 0

 '***REST OF CODE HERE

 End If

Loop

oTS.Close

oTSOut.Close

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

You’d insert your code in place of the REST OF CODE HERE placeholder. This wrapper can
take a basic script that queries a single DNS server’s A records, for example, and turn it into
a complete inventory script that documents the records in all your DNS servers. We use this
wrapper in examples later in this chapter. You can also incorporate a wrapper to read com-
puter names from Active Directory, and then target each computer for some scripted adminis-
trative task. That’s what Listing 13-2 does.

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 355

Listing 13-2 Read Names from Active Directory
'connect to the root of AD

Dim rootDSE, domainObject

Set rootDSE=GetObject("LDAP://RootDSE")

domainContainer = rootDSE.Get("defaultNamingContext")

Set oDomain = GetObject("LDAP://" & domainContainer)

'start with the domain root

WorkWithObject(oDomain)

Sub WorkWithObject(oContainer)

 Dim oADObject

 For Each oADObject in oContainer

 Select Case oADObject.Class

 Case "computer"

 'oADObject represents a COMPUTER object;

 'do something with it

 '** YOUR CODE HERE**

 Case "organizationalUnit" , "container"

 'oADObject is an OU or container...

 'go through its objects

 WorkWithObject(oADObject)

 End select

 Next

End Sub

Again, just insert your code in place of the YOUR CODE HERE placeholder. The variable
oADObject represents a computer object. You can access the oADObject.cn property to get the
computer’s name, and then you can add, for example, inventory Windows Update configura-
tion settings to make sure that all your client computers are consistently configured. These
wrappers can make scripting against multiple computers easier and more efficient, and we
encourage you to use them.

Using New and Discontinued WMI Classes
Windows XP and Windows Server 2003 introduced a wide variety of new WMI classes. One
of the biggest challenges in scripting is remembering which classes aren’t supported in Win-
dows 2000 and older versions of Windows. It can be frustrating to write a script that runs per-
fectly on one computer, but that doesn’t run at all on another.

We’ve found that the best resource for figuring out what WMI classes will work on a particular
operating system is the MSDN Library, available at http://msdn.microsoft.com/library.

To access the Library’s information about WMI classes, follow these steps.

1. On the Library’s main page, click the Win32 and COM Development link in the left
pane to expand the list.

356 Part III: Advanced Scripting Techniques, Tools, and Technologies

2. Click each of these links to further expand the list and display information in the right
pane: click Administration and Management, click Windows Management Instrumenta-
tion, click SDK Documentation, click Windows Management Instrumentation, click
WMI Reference, click WMI Classes, and finally, click Win32 Classes.

Note The path to this information is somewhat different on the CD or DVD versions of the
Library, and this path to the Web-based Library is also subject to change.

Within each class’ description—usually at the bottom of a WMI class’ description—you’ll find
a list of requirements for client and server operating systems. Older classes will list the client
requirement as, for example. Requires Windows XP, Windows 2000 Professional, or Windows NT
Workstation 4.0 SP4 and later. A newer class might simply specify Requires Windows XP. The
classes that aren’t supported on older versions of Windows won’t list the older versions as a
requirement in the class description. For example, the Win32_Ping class lists Windows XP
and Windows Server 2003, but not older versions of Windows.

One interesting fact about Windows Server 2003 is that it actually omits a set of WMI classes,
and discontinues several others. These classes are still supported, but you have to specifically
install them. One set of classes provides support for working with installed software pack-
ages, whereas another provides WMI with the capability to work with Simple Network Man-
agement Protocol (SNMP). To install the WMI SNMP provider on a Windows Server 2003
server, follow these steps.

1. Open Control Panel.

2. Click Add or Remove Programs.

3. Click the Add/Remove Windows Components icon in the left pane.

4. Click Management and Monitoring Tools Details, and then click the Details button.

5. Select the WMI SNMP Provider check box, and click OK.

The Windows Installer provider, which provides support for installed software, is located
on the Windows Server 2003 product CD. Note that this provider might not be directly avail-
able in future versions of Windows. Windows Server 2003 also discontinues the WMI ADSI
extension and the ODBC WMI adapter, although both might still be present on Windows XP
systems.

Using the Win32_PingStatus Class
One of the neatest new WMI classes added in Windows XP and Windows Server 20030 is
Win32_PingStatus. Unlike most WMI classes, which represent some portion of the operating
system or a computer’s hardware, this class executes a network ping command and returns

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 357

the results as properties of a class instance. Listing 13-3 shows this new class in its basic
format.

Listing 13-3 View the Win32_PingStatus Class Results
Set cPingResults = _

 GetObject("winmgmts://./root/cimv2").ExecQuery("SELECT * " & _

 "FROM Win32_PingStatus WHERE Address = 'don-laptop'")

For Each oPingResult In cPingResults

 If oPingResult.StatusCode = 0 Then

 WScript.Echo "Responds"

 Else

 WScript.Echo "Doesn't respond"

 End If

Next

As you can see, you simply add a WHERE clause and specify the address you want to ping. The
address can be a network-resolvable name or an IP address, whichever you prefer. The
instance that comes back will have a StatusCode property, which is 0 if the specified address
responded, and nonzero if it didn’t. This is a great tool to add to scripts that connect to remote
computers. Rather than letting the script fail when it can’t connect, or adding error trapping
and then waiting through a lengthy timeout, you can proactively ping the computer to see if
it’s available before attempting any other type of connection. Listing 13-4 wraps the ping capa-
bility into an easy-to-use function that you can paste into your scripts.

Listing 13-4 Ping the Network
Function Ping(strComputer)

 Set cPingResults = _

 GetObject("winmgmts://./root/cimv2").ExecQuery("SELECT * " & _

 "FROM Win32_PingStatus WHERE Address = '" & strComputer & "'")

 For Each oPingResult In cPingResults

 If oPingResult.StatusCode = 0 Then

 Ping = True

 Else

 Ping = False

 End If

 Next

End Function

With this function in a script, you can perform a basic test by adding something like the fol-
lowing:

WScript.Echo Ping("192.168.0.1")

Of course, the Win32_PingStatus class has properties besides Status, and they can provide use-
ful information about the computer you’re pinging. Consider Listing 13-5 on the next page,
which uses some of the additional properties of this new class.

358 Part III: Advanced Scripting Techniques, Tools, and Technologies

Listing 13-5 Get Ping Information
strComputer = "www.sapien.com"

Set cPingResults = _

 GetObject("winmgmts://./root/cimv2").ExecQuery("SELECT * " & _

 "FROM Win32_PingStatus WHERE Address = '" & strComputer & "'")

For Each oPingResult In cPingResults

 If oPingResult.StatusCode = 0 Then

 WScript.Echo strComputer & " Responds from "

 WScript.Echo oPingResult.ProtocolAddress

 WScript.Echo "Response time " & oPingResult.ResponseTime

 WScript.Echo "Source routes " & oPingResult.SourceRoute

 Else

 WScript.Echo strComputer & " Doesn't respond"

 End If

Next

This script will check the availability of a computer and then display the address that was
resolved from the name, the response time for the ping, and any source routing information
that’s available. For example, you might check the response time to a remote computer before
launching into some particularly intensive administrative task. A computer returning a slow
response time might not be an ideal target for that task. Listing 13-6 is a function that returns
a computer’s response time.

Listing 13-6 Return Ping Response Time
Function PingResponse(strComputer)

 Dim t, intResponse

 intResponse = -1

 For t = 1 To 5

 Set cPingResults = _

 GetObject("winmgmts://./root/cimv2").ExecQuery("SELECT * " & _

 "FROM Win32_PingStatus WHERE Address = '" & strComputer & "'")

 For Each oPingResult In cPingResults

 If oPingResult.StatusCode = 0 Then

 If intResponse = -1 Then intResponse = 0

 intResponse = intResponse + oPingResult.ResponseTime

 End If

 Next

 Next

 If intResponse = -1 Then

 PingResponse = -1

 Else

 PingResponse = Int(intResponse/5)

 End If

End Function

You can test this as follows.

WScript.Echo PingResponse("192.168.0.1")

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 359

The function will ping the remote computer five times, and then list its average response time
in milliseconds, much like the command-line Ping command does. Your script can then take
appropriate action.

If PingResponse(strComputer) < 75 Then

 'Perform Tasks

Else

 'Don’t perform tasks

End If

Although it’s fairly simple, the new Win32_PingStatus class has terrific functionality. Keep in
mind that the computer being pinged does not need this class. Only the computer running
the script needs to have the Win32_PingStatus class (meaning it must be Windows XP or
later).

Configuring the Windows Firewall
The Windows Firewall, introduced in Windows XP Service Pack 2 and Windows Server 2003
Service Pack 1, provides per-system firewall capabilities. The Windows Firewall is completely
configurable by using either its local graphical user interface, or the centrally configured
Group Policy objects in Active Directory. The latter is our preferred method for configuring
the Windows Firewall, because it’s easier and fits well into most organizations’ administrative
models.

However, in the event that you want to script the Windows Firewall, there is a complete set of
interfaces for doing so. Unlike many of the topics we cover in this chapter, the Windows Fire-
wall isn’t exposed through a set of WMI classes. Instead, you’ll work with a set of COM
objects from the Home Networking Configuration (HNetCfg) library. Specifically, you’ll work
with the HNetCfg.FwMgr object, which provides most firewall management functions. For
example, Listing 13-7 is a basic script that lists the globally open ports in the firewall.

Listing 13-7 List Open Firewall Ports
Set objFirewall = CreateObject("HNetCfg.FwMgr")

Set objPolicy = objFirewall.LocalPolicy.CurrentProfile

Set colPorts = objPolicy.GloballyOpenPorts

For Each objPort in colPorts

 Wscript.Echo "Port name: " & objPort.Name

 Wscript.Echo "Port number: " & objPort.Port

 Wscript.Echo "Port IP version: " & objPort.IPVersion

 Wscript.Echo "Port protocol: " & objPort.Protocol

 Wscript.Echo "Port scope: " & objPort.Scope

 Wscript.Echo "Port remote addresses: " & objPort.RemoteAddresses

 Wscript.Echo "Port enabled: " & objPort.Enabled

 Wscript.Echo "Port built-in: " & objPort.Builtin

Next

360 Part III: Advanced Scripting Techniques, Tools, and Technologies

The script starts by instantiating the Windows Firewall’s manager object. Note that the script
instantiates the local object by using this.

Set objFirewall = CreateObject("HNetCfg.FwMgr","\\Client23")

You can instantiate the object on a remote computer (if you have permission to do so and the
Windows Firewall isn’t blocking the Distributed COM traffic). This object is physically imple-
mented in Hnetcfg.dll, which is located in the System32 folder.

The script then accesses the local firewall policy for the current profile (the firewall profile,
not the current user profile). Last, the script enumerates the ports in the current profile’s Glo-
ballyOpenPorts list, and displays them.

The local policy of the current profile is what you’ll use for most Windows Firewall manipula-
tion. Listing 13-8 configures the Windows Firewall to permit remote administration traffic,
including remote WMI scripting.

Listing 13-8 Enable Remote Administration
Set objFirewall = CreateObject("HNetCfg.FwMgr")

Set objPolicy = objFirewall.LocalPolicy.CurrentProfile

Set objAdminSettings = objPolicy.RemoteAdminSettings

objAdminSettings.Enabled = True

You’ll deploy this simple script often in a login script, because the Windows Firewall blocks
administrative traffic. This is one of the first things we put into a login script in some environ-
ments, because it ensures that users can’t block administrative traffic. (Note that a Group Pol-
icy object can prevent this script from working, but if you have a Group Policy object in place,
you’re already capable of centrally controlling this setting.)

Because Group Policy can be used to effectively control the Windows Firewall, you might won-
der why you would bother with scripts. Sometimes you might need to make a change that’s
difficult to walk a user through when the user’s computer—such as a laptop—isn’t connected
to the corporate network. In a circumstance like that, e-mailing a short script can provide a
temporary quick fix. For example, suppose a remote employee needs a particular application
authorized in the Windows Firewall. Listing 13-9 is a script that can do the job.

Listing 13-9 Authorize Applications
Set objFirewall = CreateObject("HNetCfg.FwMgr")

Set objPolicy = objFirewall.LocalPolicy.CurrentProfile

Set objApplication = CreateObject("HNetCfg.FwAuthorizedApplication")

objApplication.Name = "Corp App"

objApplication.IPVersion = 2

objApplication.ProcessImageFileName = "c:\myappl.exe"

objApplication.RemoteAddresses = "*"

objApplication.Scope = 0

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 361

objApplication.Enabled = True

Set colApplications = objPolicy.AuthorizedApplications

colApplications.Add(objApplication)

This script is working with the current profile from the local policy. However, notice that it’s
also working with a second object, HNetCfg.FwAuthorizedApplication, which represents an
authorized application in the Windows Firewall. The script begins by assigning a display
name to the application, and setting the IP version to 2.

objApplication.Name = "Corp App"

objApplication.IPVersion = 2

It then specifies the executable, or image, of the application. This is what the Windows Fire-
wall will use to identify the application.

objApplication.ProcessImageFileName = "c:\myappl.exe"

Next, the script indicates the remote addresses that will be allowed to connect to the applica-
tion. In this example, we specified the wildcard character (*) to indicate that all remote
addresses are allowed to connect. We also specified a local scope for the connection, and set
the new application to be enabled.

objApplication.RemoteAddresses = "*"

objApplication.Scope = 0

objApplication.Enabled = True

Finally, we retrieve the current list of authorized applications from the current profile’s fire-
wall policy. We use the connection’s Add method to add our newly created application to the
collection, making it an officially authorized application in the Windows Firewall.

Set colApplications = objPolicy.AuthorizedApplications

colApplications.Add(objApplication)

Not all changes to the Windows Firewall have to be this complex (although this is a pretty
straightforward example). Listing 13-10 is an even simpler example that opens a single port
(port 9999) in the globally open ports list.

Listing 13-10 Open a Globally Open Port
Set objFirewall = CreateObject("HNetCfg.FwMgr")

Set objPolicy = objFirewall.LocalPolicy.CurrentProfile

Set colPorts = objPolicy.GloballyOpenPorts

Set objPort = colPorts.Item(9999,6)

objPort.Enabled = TRUE

362 Part III: Advanced Scripting Techniques, Tools, and Technologies

The HNetCfg object library contains a number of object categories that can be useful, includ-
ing the following:

■ LocalPolicy This object represents the local firewall policy, as opposed to a domain fire-
wall policy. You’ve seen this type of object in action earlier in this chapter, as well as how
to retrieve it by using the HNetCfg.FwMgr object’s LocalPolicy property.

■ Profile These objects for manipulating the Windows Firewall profiles include:

■ AuthorizedApplications This object is a collection of authorized applications in
the firewall. You can retrieve this collection through any profile object.

■ CurrentProfile This object represents the current firewall profile. Using the
HNetCfg.FwMgr.LocalPolicy.CurrentProfile command is one way to retrieve a profile
object, specifically, the current profile.

■ CurrentProfileType This property indicates the type of Windows Firewall profile
that’s currently in effect. This property will be 0 (zero) if the current profile is a
domain profile, or 1 if it’s a standard profile.

■ ExceptionsNotAllowed This property, which can be TRUE or FALSE, tells the Win-
dows Firewall whether to allow firewall exceptions. It’s a part of any profile object.

■ FirewallEnable This property, which can be TRUE or FALSE indicates whether
the firewall is enabled. It is accessible through a profile object.

■ GetProfileByType This method retrieves the Windows Firewall of the specified
type. Aside from the CurrentProfile object, using this method is the only way to
retrieve a profile object. For example, the HNetCfg.FwMgr.GetProfileByType com-
mand will retrieve the domain firewall profile.

■ GloballyOpenPorts This is a collection of globally opened ports in the profile. It is
accessible through a profile object.

■ IcmpSettings This is a read-only property that details the ICMP settings in a pro-
file. It is accessible though a profile object.

■ NotificationsDisabled This property, which can be TRUE or FALSE indicates
whether interactive user notifications are turned on or off. This property is
accessed through a profile object.

■ RemoteAdminSettings This is a child object that represents the remote administra-
tion settings of the firewall profile. It is accessible though a profile object.

■ Services This is a collection of the services in a profile. It is accessible through a
profile object.

■ Type This indicates the type of a profile (0 for domain, 1 for standard). It is
accessed as a property of a profile object.

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 363

Tip All this business about profiles can be confusing. Just remember that you
can choose to work with the CurrentProfile, or you can specifically retrieve the
domain or standard profile. All the other profile-related properties and collections
are accessed through a profile object. If HNetCfgMgr.LocalPolicy.CurrentProfile
returns the firewall’s domain profile object, HNetCfgMgr.LocalPolicy.GetProfileBy-
Type(0) returns the same profile object.

■ RemoteAdministration These objects affect how the firewall treats remote administra-
tion traffic. RemoteAdministration is a child object of a profile object, as discussed earlier,
and it has the following members:

■ Enabled This property, which can be TRUE or FALSE indicates whether remote
administration is allowed.

■ IpVersion This indicates the version of IP for which remote administration is
enabled.

■ RemoteAddresses This is a list of remote IP addresses that are allowed to send
administrative traffic (can be * for all).

■ Scope This indicates the network scope from which network administration is
allowed.

Tip Remote administration is an excellent example of why the firewall offers two profiles.
When the domain profile is current, you might want remote administration enabled, but when
the standard profile is current, you might not, because the user might not be connected to the
corporate network while the standard profile is active.

Other objects include IcmpSettings, Port, Application, and Service. You can read more about
them at

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef
/47f25d7d-882b-4f87-b05f-31e5664fc15e.mspx

On the CD This link is included on the companion CD. Click Windows Firewall Tools and
Settings (Scripting Reference).

More Info You’ll find more scripts for working with the Windows Firewall in the Microsoft
TechNet Script Center, at

http://www.microsoft.com/technet/scriptcenter/scripts/network/firewall/default.mspx

(This link is included on the companion CD; click Windows Firewall.) The listings in this section
were adapted from samples in the Script Center.

364 Part III: Advanced Scripting Techniques, Tools, and Technologies

Using Disk Quota Management
Although Windows 2000 introduced built-in disk quotas to the Windows operating system,
WMI-based management of disk quotas is included for the first time in Windows Server 2003.
A new class, Win32_DiskQuota, represents an individual disk quota entry. Listing 13-11 lists
all the quotas from a file server named FILES1.

Listing 13-11 List Quota Entries
Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\FILES1\root\cimv2")

Set colDiskQuotas = objWMIService.ExecQuery(_

 "Select * from Win32_DiskQuota")

For each objQuota in colDiskQuotas

 Wscript.Echo "Disk Space Used: " & objQuota.DiskSpaceUsed

 Wscript.Echo " Limit: " & objQuota.Limit

 Wscript.Echo " Quota Volume: " & objQuota.QuotaVolume

 Wscript.Echo " Status: " & objQuota.Status

 Wscript.Echo " User: " & objQuota.User

 Wscript.Echo " Warning Limit: " & objQuota.WarningLimit

 WScript.Echo "--"

Next

The Win32_DiskQuota class supports several properties that make it easy to see current quota
entries. You might find, however, that the User property takes a bit of getting used to. It’s actu-
ally a reference to a Win32_Account class instance, so you’ll have to work with that class to
obtain user property information. Similarly, the QuotaVolume property is a reference to an
instance of the Win32_LogicalDisk class. For example, consider this alternate query that
retrieves the quota entry for a particular user on a volume.

Set objQuota = objWMIService.Get _

 ("Win32_DiskQuota.QuotaVolume= " & _

 "'Win32_LogicalDisk.DeviceID=""C:""'," & _

 "User='Win32_Account.Domain=""company"",Name=""donj""'")

Here, the WMI service’s Get method, rather than the ExecQuery method, is used to retrieve a
class instance. Specifically, the instance for the user donj, on the server’s C volume, is being
retrieved.

After you retrieve an instance of the class, you can make modifications to it. Most likely, you’ll
want to modify the Limit property.

objQuota.Limit = 10000

objQuota.Put_

This modifies the limit to 10,000KB, or 10MB.

A second class, Win32_QuotaSetting, provides access to the quota configuration settings for an
entire server. This class has several properties; Listing 13-12 displays them all.

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 365

Listing 13-12 List Quota Settings
Set objWMIService = GetObject("winmgmts://FILES1/root/cimv2")

Set colItems = objWMIService.ExecQuery("Select * from Win32_QuotaSetting",,48)

For Each objItem in colItems

 WScript.Echo "Caption: " & objItem.Caption

 WScript.Echo "DefaultLimit: " & objItem.DefaultLimit

 WScript.Echo "DefaultWarningLimit: " & objItem.DefaultWarningLimit

 WScript.Echo "Description: " & objItem.Description

 WScript.Echo "ExceededNotification: " & objItem.ExceededNotification

 WScript.Echo "SettingID: " & objItem.SettingID

 WScript.Echo "State: " & objItem.State

 WScript.Echo "VolumePath: " & objItem.VolumePath

 WScript.Echo "WarningExceededNotification: " & _

 objItem.WarningExceededNotification

Next

You can modify many of these settings. For example, to change the default quota limit, assum-
ing you’ve queried a quota setting instance into the variable objQuotaSetting, you would enter
the following:

objQuotaSetting.DefaultLimit = 10000000

objQuotaSetting.Put_

More Info You can find additional sample scripts for managing disk quotas in the TechNet
Script Center at

http://www.microsoft.com/technet/scriptcenter/scripts/storage/quotas/default.mspx

(This link is included on the companion CD; click Disk Quotas.)

Using the DNS Provider
The new DNS provider for WMI included in Windows Server 2003 exposes much of the Win-
dows DNS server functionality to WMI, and therefore to your scripts. Keep in mind that this
provider only exists on Windows Server 2003 computers that have the DNS Server software
installed and running. Although you can run the scripts in this section on any Windows com-
puter, they’ll need to target a server that has the DNS software.

Note A version of this provider was released for Windows 2000 Server. You’ll find it in the
Windows 2000 Server Resource Kit.

The provider exposes two distinct categories of WMI classes: one for DNS record manage-
ment, and the other for DNS server management. As an example of the first category, Listing
13-13 on the next page shows how to clear a DNS server’s name resolution cache by using the
MicrosoftDNS_Cache class.

366 Part III: Advanced Scripting Techniques, Tools, and Technologies

Listing 13-13 Clear DNS Server Cache
Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\DNS1" & _

 "\root\MicrosoftDNS")

Set colItems = objWMIService.ExecQuery("Select * From MicrosoftDNS_Cache")

For Each objItem in colItems

 objItem.ClearCache()

Next

The most notable feature of this script is that it isn’t querying the commonly used root\cimv2
WMI namespace. Instead, the DNS provider is accessible through a new namespace,
root\MicrosoftDNS. Also notice that the class names, unlike most of those in root\cimv2, don’t
start with Win32_. Listing 13-13 is a short, simple script, but it still offers the flexibility of most
WMI scripts. For example, Listing 13-14 repurposes the script to run against several DNS serv-
ers whose names are listed in a text file, C:\Dnsservers.txt.

Listing 13-14 Clear Multiple DNS Servers’ Caches
Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTS = objFSO.OpenTextFile("c:\dnsservers.txt")

Do Until objTS.AtEndOfStream

 strComputer = objTS.ReadLine

 Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\" & strComputer & _

 "\root\MicrosoftDNS")

 Set colItems = objWMIService.ExecQuery(_

 "Select * From MicrosoftDNS_Cache")

 For Each objItem in colItems

 objItem.ClearCache()

 Next

Loop

objTS.Close

The following classes provide other server-management capabilities.

■ MicrosoftDNS_Zone This class represents a DNS zone. You can use it to age records,
pause the zone, change the zone type, and so forth.

■ MicrosoftDNS_Server This class represents the server itself. You can use it to start
record scavenging, start and stop the DNS Server service, and access server configura-
tion properties. Listing 13-15 lists all the properties of the class.

■ MicrosoftDNS_Domain This class provides access to a DNS domain’s configuration
settings.

■ MicrosoftDNS_RootHints This class provides access to a server’s root hints.

■ MicrosoftDNS_Statistic This class provides access to a variety of performance statistics.

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 367

Listing 13-15 List DNS Server Properties
strComputer = "."

Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\" & strComputer & _

 "\root\MicrosoftDNS")

Set colItems = objWMIService.ExecQuery("Select * from MicrosoftDNS_Server")

For Each objItem in colItems

 Wscript.Echo "Name: " & objItem.Name

 Wscript.Echo "Address Answer Limit: " & objItem.AddressAnswerLimit

 Wscript.Echo "Allow Update: " & objItem.AllowUpdate

 Wscript.Echo "Autocache Update: " & objItem.AutoCacheUpdate

 Wscript.Echo "Autoconfig File Zones: " & objItem.AutoConfigFileZones

 Wscript.Echo "Bind Secondaries: " & objItem.BindSecondaries

 Wscript.Echo "Boot Method: " & objItem.BootMethod

 Wscript.Echo "Default Aging State: " & objItem.DefaultAgingState

 Wscript.Echo "Default No-Refresh Interval: " & _

 objItem.DefaultNoRefreshInterval

 Wscript.Echo "Default Refresh Interval: " & objItem.DefaultRefreshInterval

 Wscript.Echo "Disable AutoReverse Zones: " & _

 objItem.DisableAutoReverseZones

 Wscript.Echo "Disjoint Nets: " & objItem.DisjointNets

 Wscript.Echo "Directory Service Available: " & objItem.DsAvailable

 Wscript.Echo "Directory Service Polling Interval: " & _

 objItem.DsPollingInterval

 Wscript.Echo "Directory Service Tombstone Interval: " & _

 objItem.DsTombstoneInterval

 Wscript.Echo "EDNS Cache Timeout: " & objItem.EDnsCacheTimeout

 Wscript.Echo "Enable Directory Partitions: " & _

 objItem.EnableDirectoryPartitions

 Wscript.Echo "Enable DNSSec: " & objItem.EnableDnsSec

 Wscript.Echo "Enable EDNS Probes: " & objItem.EnableEDnsProbes

 Wscript.Echo "Event Log Level: " & objItem.EventLogLevel

 Wscript.Echo "Forward Delegations: " & objItem.ForwardDelegations

 If Not IsNull(objItem.Forwarders) Then

 strForwarders = Join(objItem.Forwarders, ",")

 Wscript.Echo "Forwarders: " & strForwarders

 Else

 Wscript.Echo "Forwarders:"

 End If

 Wscript.Echo "Forwarding Timeout: " & objItem.ForwardingTimeout

 Wscript.Echo "Is Slave: " & objItem.IsSlave

 If Not IsNull(objItem.ListenAddresses) Then

 strListenAddresses = Join(objItem.ListenAddresses, ",")

 Wscript.Echo "Listen Addresses: " & strListenAddresses

 Else

 Wscript.Echo "Listen Addresses:"

 End If

 Wscript.Echo "Local Net Priority: " & objItem.LocalNetPriority

 Wscript.Echo "Logfile Maximum Size: " & objItem.LogFileMaxSize

 Wscript.Echo "Logfile Path: " & objItem.LogFilePath

 Wscript.Echo "Log Level: " & objItem.LogLevel

 Wscript.Echo "Loose Wildcarding: " & objItem.LooseWildcarding

 Wscript.Echo "Maximum Cache Time-to-Live: " & objItem.MaxCacheTTL

 Wscript.Echo "Maximum Negative Cache Time-to-Live: " & _

 objItem.MaxNegativeCacheTTL

368 Part III: Advanced Scripting Techniques, Tools, and Technologies

 Wscript.Echo "Name Check Flag: " & objItem.NameCheckFlag

 Wscript.Echo "No Recursion: " & objItem.NoRecursion

 Wscript.Echo "Recursion Retry: " & objItem.RecursionRetry

 Wscript.Echo "Recursion Timeout: " & objItem.RecursionTimeout

 Wscript.Echo "RoundRobin: " & objItem.RoundRobin

 Wscript.Echo "Rpc Protocol: " & objItem.RpcProtocol

 Wscript.Echo "Scavenging Interval: " & objItem.ScavengingInterval

 Wscript.Echo "Secure Responses: " & objItem.SecureResponses

 Wscript.Echo "Send Port: " & objItem.SendPort

 If Not IsNull(objItem.ServerAddresses) Then

 strServerAddress = Join(objItem.ServerAddresses, ",")

 Wscript.Echo "Server Addresses: " & strServerAddress

 Else

 Wscript.Echo "Server Addresses:"

 End If

 Wscript.Echo "Started: " & objItem.Started

 Wscript.Echo "Start Mode: " & objItem.StartMode

 Wscript.Echo "Strict File Parsing: " & objItem.StrictFileParsing

 Wscript.Echo "Update Options: " & objItem.UpdateOptions

 Wscript.Echo "Version: " & objItem.Version

 Wscript.Echo "Write Authority NS: " & objItem.WriteAuthorityNS

 Wscript.Echo "Xfr Connect Timeout: " & objItem.XfrConnectTimeout

Next

Tip Listing 13-15 was generated by a WMI code wizard like those found in Scriptomatic v2.0
and SAPIEN PrimalScript. You can see how useful these wizards are for quickly generating
scripts that list all the properties of a given class, including array-style properties such as the
Forwarders property. Note that this script, as written, must be run on a server that has the DNS
server software installed.

Additionally, a huge list of classes provides access to DNS record management. Essentially, one
class exists for each type of record that the DNS server can contain: A, MX, CNAME, TXT, NS,
SRV, and so forth. Listing 13-16 shows how to list all the A records from the server. (Here again,
WMI code wizards save a great deal of time by quickly generating simple scripts like this.)

Listing 13-16 List All A Records
Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\DNS1" & _

 "\root\MicrosoftDNS")

Set colItems = objWMIService.ExecQuery("Select * from MicrosoftDNS_AType")

For Each objItem in colItems

 Wscript.Echo "IP Address: " & objItem.IPAddress

 Wscript.Echo "Owner Name: " & objItem.OwnerName

 Wscript.Echo "Container Name: " & objItem.ContainerName

 Wscript.Echo "DNS Server Name: " & objItem.DnsServerName

 Wscript.Echo "Domain Name: " & objItem.DomainName

 Wscript.Echo "Record Class: " & objItem.RecordClass

 Wscript.Echo "Record Data: " & objItem.RecordData

 Wscript.Echo "Text Representation: " & objItem.TextRepresentation

 Wscript.Echo "Time-to-Live: " & objItem.TTL

 Wscript.Echo

Next

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 369

Notice that the WMI class name is MicrosoftDNS_AType. You can easily figure out the class
name for other record types based on that pattern. For example, CNAME records are exposed
through the MicrosoftDNS_CNAMEType class. As shown in Listing 13-17, working with a dif-
ferent class doesn’t require many changes to a script.

Listing 13-17 List All CNAME Records
Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\DNS1" & _

 "\root\MicrosoftDNS")

Set colItems = objWMIService.ExecQuery("Select * from MicrosoftDNS_CNAMEType")

For Each objItem in colItems

 Wscript.Echo "Owner Name: " & objItem.OwnerName

 Wscript.Echo "Primary Name: " & objItem.PrimaryName

 Wscript.Echo "Container Name: " & objItem.ContainerName

 Wscript.Echo "DNS Server Name: " & objItem.DnsServerName

 Wscript.Echo "Domain Name: " & objItem.DomainName

 Wscript.Echo "Record Class: " & objItem.RecordClass

 Wscript.Echo "Record Data: " & objItem.RecordData

 Wscript.Echo "Text Representation: " & objItem.TextRepresentation

 Wscript.Echo "Time-to-Live: " & objItem.TTL

 Wscript.Echo

Next

Notice the slight change in properties between A and CNAME. Because those two record types
are so similar, their listing of properties is equally similar. Records like MX, however (accessi-
ble through the MicrosoftDNS_MXType class), have much different properties, corresponding
with the different properties you find in an MX record. These WMI classes are good for listing
records and creating new records. Scripting the creation of new static records is an excellent
way to ensure that they’re created consistently across multiple servers, and to automate the
tedious process of creating multiple new records. Listing 13-18 is an example of using the
MicrosoftDNS_MXType class to create a new record.

Listing 13-18 Create an MX Record
strDNSServer = "dns1.company.com"

strContainer = "company.com"

strOwner = "mail1.company.com"

intRecordClass = 1

intTTL = 600

intPreference = 0

strMailExchanger = "mail1.company.com"

Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\DNS1" & _

 "\root\MicrosoftDNS")

Set objItem = objWMIService.Get("MicrosoftDNS_MXType")

errResult = objItem.CreateInstanceFromPropertyData _

 (strDNSServer, strContainer, strOwner, intRecordClass, intTTL, _

 intPreference, strMailExchanger)

370 Part III: Advanced Scripting Techniques, Tools, and Technologies

Note You will need to modify this and other DNS-related examples to include appropriate
values. For example, if your domain isn’t company.com, this script won’t work, because
mail1.company.com wouldn’t be valid for your domain.

Here, string variables are used to set up the properties for the new record. Then the DNS
provider itself is queried, rather than a particular class.

Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\DNS1" & _

 "\root\MicrosoftDNS")

Next, the script asks the DNS provider to return the desired record type. No specific instance
is being retrieved here; instead, the provider is returning what’s referred to as the class proto-
type, which is essentially just a description of the class.

Set objItem = objWMIService.Get("MicrosoftDNS_MXType")

With that class description available, the script can create a new instance—that is, a new
record—by using the class’ own CreateInstanceFromPropertyData method. The method requires
that the script provide values for all the class’ properties.

errResult = objItem.CreateInstanceFromPropertyData _

 (strDNSServer, strContainer, strOwner, intRecordClass, intTTL, _

 intPreference, strMailExchanger)

This technique can be used to create a new instance of any DNS record class. Listing 13-19, for
example, uses the technique to create a new TXT record, populated with a Sender Policy
Framework (SPF) description.

Listing 13-19 Create a TXT Record
strDNSServer = "dns1.company.com"

strContainer = "company.com"

strOwner = "dns1.company.com"

intRecordClass = 1

intTTL = 600

strText = "v=spf1 a ~all"

Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\DNS1" & _

 "\root\MicrosoftDNS")

Set objItem = objWMIService.Get("MicrosoftDNS_TXTType")

errResult = objItem.CreateInstanceFromPropertyData _

 (strDNSServer, strContainer, strOwner, intRecordClass, intTTL, strText)

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 371

Again, the new instance’s property values are assigned to variables. The script connects to the
DNS provider and asks for the class prototype for the MicrosoftDNS_TXTType class. The script
uses that information to create a new instance of the class, passing in the variables to populate
the new instance’s properties.

More Info Additional DNS record management sample scripts can be found at

http://www.microsoft.com/technet/scriptcenter/scripts/network/dns/records/default.mspx

(This link is included on the companion CD; click DNS Records.) Scripts for managing the DNS
Server itself can be found at

http://www.microsoft.com/technet/scriptcenter/scripts/network/dns/manage/default.mspx

(This link is included on the companion CD; click DNS Server Management Tasks.)

Using Active Directory Replication and Trusts
Windows Server 2003 domain controllers expose a new set of classes for managing
Active Directory. Like the DNS classes, these classes are installed into their own name-
space, root\MicrosoftActiveDirectory. From an administrative viewpoint, some of the
most useful classes relate to Active Directory replication. For example, Listing 13-20 uses
the MSAD_ReplPendingOp class, which lists pending replication operations, to display the
number of replication jobs pending on a given domain controller.

Listing 13-20 List Pending Replication Jobs
strComputer = "DC1"

Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\" & _

 strComputer & "\root\MicrosoftActiveDirectory")

Set colReplicationOperations = objWMIService.ExecQuery _

 ("Select * from MSAD_ReplPendingOp")

If colReplicationOperations.Count = 0 Then

 Wscript.Echo "There are no replication jobs pending."

Else

 Dim intCount

 For each objReplicationJob in colReplicationOperations

 intCount = intCount + 1

 Next

 WScript.Echo "There are " & intCount & " replication" & _

 " job(s) pending."

End If

372 Part III: Advanced Scripting Techniques, Tools, and Technologies

Tip At the beginning of this chapter, we provided two wrappers designed to target multiple
computers. If you had a text file that listed the names of all domain controllers in your domain,
and then inserted Listing 13-20 into the wrapper that reads names from a text file (Listing 13-1),
you’d have a tool that showed pending replication for every domain controller in your environ-
ment. That would be a handy tool for various troubleshooting tasks or for routine monitoring.

Each domain controller also includes a class named MSAD_DomainController, which repre-
sents the domain controller and provides access to various pieces of status information. List-
ing 13-21 shows how to query this class, and displays several of its properties.

Listing 13-21 Display Domain Controller Properties
strComputer = "DC"

Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\" & _

 strComputer & "\root\MicrosoftActiveDirectory")

Set colDC = objWMIService.ExecQuery _

 ("Select * from MSAD_DomainController")

For Each objDC In colDC

 WScript.Echo "Common name: " & objDC.CommonName

 WScript.Echo "Is a GC: " & objDC.IsGC

 WScript.Echo "Next RID pool available?: " & _

 objDC.IsNextRIDPoolAvailable

 WScript.Echo "In DNS?: " & objDC.IsRegisteredInDNS

 WScript.Echo "Sysvol ready?: " & objDC.IsSysVolReady

 WScript.Echo "% RIDs left: " & objDC.PercentOfRIDsLeft

 WScript.Echo "Site: " & objDC.SiteName

 WScript.Echo "Oldest add: " & objDC.TimeOfOldestReplAdd

 WScript.Echo "Oldest delete: " & objDC.TimeOfOldestReplDel

 WScript.Echo "Oldest mod: " & objDC.TimeOfOldestReplMod

 WScript.Echo "Oldest sync: " & objDC.TimeOfOldestReplSync

Next

This script could also be a useful tool for quickly displaying vital statistics for the domain con-
trollers in your environment. Other classes include MSAD_ReplNeighbor, which provides
access to all of a domain controller’s replication neighbors, as well as exposing information
about the last synchronization and the number of synchronization failures.

There are also WMI classes that work with domain trust relationships. For example, the
Microsoft_LocalDomainInfo class (also in the root\MicrosoftActiveDirectory namespace) pro-
vides trust-related information about the local domain (that is, the domain to which the
queried domain controller belongs). Listing 13-22 illustrates this class and its properties.

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 373

Listing 13-22 List Domain Properties
Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\" & _

 "DC1\root\MicrosoftActiveDirectory")

Set colDomainInfo = objWMIService.ExecQuery _

 ("Select * from Microsoft_LocalDomainInfo")

For each objDomain in colDomainInfo

 Wscript.Echo " DNS name: " & objDomain.DNSName

 Wscript.Echo "Flat name: " & objDomain.FlatName

 Wscript.Echo " SID: " & objDomain.SID

 Wscript.Echo "Tree name: " & objDomain.TreeName

 Wscript.Echo " DC name: " & objDomain.DCName

Next

Somewhat more interesting—and useful—is the Microsoft_DomainTrustStatus class, which pro-
vides information about all trust relationships within the domain. The script in Listing 13-23
is an excellent tool for getting a quick snapshot of the domain’s trusts and their current status.

Listing 13-23 List Trusts Status
Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\" & _

 "DC1\root\MicrosoftActiveDirectory")

Set colTrustList = objWMIService.ExecQuery _

 ("Select * from Microsoft_DomainTrustStatus")

For each objTrust in colTrustList

 Wscript.Echo " Trusted domain: " & objTrust.TrustedDomain

 Wscript.Echo " Trust direction: " & objTrust.TrustDirection

 Wscript.Echo " Trust type: " & objTrust.TrustType

 Wscript.Echo "Trust attributes: " & objTrust.TrustAttributes

 Wscript.Echo " Trusted DC name: " & objTrust.TrustedDCName

 Wscript.Echo " Trust status: " & objTrust.TrustStatus

 Wscript.Echo " Trust is OK: " & objTrust.TrustIsOK

 WScript.Echo "---"

Next

As with many other WMI classes, you can modify instance properties to reconfigure Active
Directory. For example, a class named Microsoft_TrustProvider exposes configuration informa-
tion for the portion of Active Directory that manages domain trusts. By modifying its proper-
ties, you can change the way this portion of Active Directory behaves. Listing 13-24, starting
on the next page, shows how to change the trust provider’s TrustListLifetime, TrustStatusLife-
time, and TrustCheckLevel properties.

374 Part III: Advanced Scripting Techniques, Tools, and Technologies

Caution Modifying the way the trust provider works can create problems in your domain if
you’re not careful. Make sure you know the ramifications of changing these properties before
doing so.

Listing 13-24 Modify the Trust Provider
Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\" & _

 "DC1\root\MicrosoftActiveDirectory")

Set colTrustList = objWMIService.ExecQuery _

 ("Select * from Microsoft_TrustProvider")

For Each objTrust in colTrustList

 objTrust.TrustListLifetime = 25

 objTrust.TrustStatusLifetime = 10

 objTrust.TrustCheckLevel = 1

 objTrust.Put_

Next

Note that the modifications here follow a pattern that should be familiar to you: new values
are assigned to the properties, and the Put method is called to save the changes.

More Info You’ll find more Active Directory trust and replication sample scripts at

http://www.microsoft.com/technet/scriptcenter/scripts/ad/monitor/default.mspx

(This link is included on the companion CD; click AD Trust and Replication.)

Using Internet Information Services 6.0
Internet Information Services (IIS) 6.0 exposes nearly all its administrative information and
capabilities through WMI, by using classes in a new root\MicrosoftIISv2 namespace. (Note that
the v2 in the name refers to the namespace’s version, not the IIS version.) Working with this
namespace is distinctly different from working with other WMI namespaces, so you need to
understand a bit about how IIS’ XML configuration metabase is built. The metabase consists
of a hierarchy, at the top of which is the IIsComputer class. Below it are services for Web, FTP,
NNTP, and so forth. Of course, IIS supports multiple Web sites per server, so the Web service
can include multiple child sites. This hierarchy is typically represented in a path format not
unlike a file path. For example, W3SVC/1/ROOT refers to the Web service (W3SVC), the first
child site (typically the default Web site), and then the root virtual directory of that site.

The IIS namespace is divided into two sets of classes. One set of classes provides access to
read-only properties, and the other set provides access to read/write properties. For example,
a virtual directory—the IisWebVirtualDir class—consists of read-only properties, and its

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 375

companion class—IisWebVirtualDirSettings—contains properties that can be read and written
(changed). Listing 13-25 shows how a particular virtual directory can be queried and all its
properties displayed.

Listing 13-25 List IIS Virtual Directory Properties
On Error Resume Next

set oProvider = GetObject("winmgmts://localhost/root/MicrosoftIISv2")

set oVirtualDir = oProvider.get("IIsWebVirtualDir='W3SVC/1/ROOT'")

set oVirtualDirSetting = oProvider.get("IIsWebVirtualDirSetting='W3SVC/1/ROOT'")

WScript.Echo "Read only properties of W3SVC/1/Root:"

For Each Property in oVirtualDir.Properties_

 WScript.Echo Property.Name & " = " & Property.Value

Next

WScript.Echo

WScript.Echo "Read/Write properties of W3SVC/1/Root:"

For Each Property in oVirtualDirSetting.Properties_

 WScript.Echo Property.Name & " = " & Property.Value

Next

Let’s quickly walk through how this works. The script starts by connecting to the
MicrosoftIISv2 namespace. Notice that it doesn’t query a particular class; instead, it asks the
namespace—through use of the Get method—to return a particular class (IisWebVirtualDir)
that matches a specified path.

On Error Resume Next

set oProvider = GetObject("winmgmts://localhost/root/MicrosoftIISv2")

set oVirtualDir = oProvider.get("IIsWebVirtualDir='W3SVC/1/ROOT'")

set oVirtualDirSetting = oProvider.get("IIsWebVirtualDirSetting='W3SVC/1/ROOT'")

The script then enumerates through the class’ properties collection, displaying each prop-
erty’s name and value.

WScript.Echo "Read only properties of W3SVC/1/Root:"

For Each Property in oVirtualDir.Properties_

 WScript.Echo Property.Name & " = " & Property.Value

Next

The same technique is used to display the read/write settings from the companion IisWeb-
VirtualDirSettings class.

WScript.Echo "Read/Write properties of W3SVC/1/Root:"

For Each Property in oVirtualDirSetting.Properties_

 WScript.Echo Property.Name & " = " & Property.Value

Next

The IIS WMI namespace is often used to consistently configure IIS servers. For example,
manually creating a new Web site in a Web farm of 20 servers can be boring and error-
prone. Using a script is faster and includes far less possibility of typos and other errors. Listing

376 Part III: Advanced Scripting Techniques, Tools, and Technologies

13-26 creates a new Web site on a single computer. You could add this into a wrapper script to
target multiple computers.

Listing 13-26 Create a New Web Site
set oLocator = CreateObject("WbemScripting.SWbemLocator")

set oProvider = oLocator.ConnectServer("Server2", "root/MicrosoftIISv2")

set oService = oProvider.Get("IIsWebService='W3SVC'")

oBindings = Array(0)

Set oBindings(0) = oProvider.Get("ServerBinding").SpawnInstance_()

oBindings(0).IP = ""

oBindings(0).Port = "8383"

oBindings(0).Hostname = ""

Dim sSiteObjectPath

sSiteObjectPath = oService.CreateNewSite("NewWebSite", oBindings, "C:\Inetpub\Wwwroot")

If Err Then

WScript.Echo "*** Error Creating Site: " & Hex(Err.Number) & _

 ": " & Err.Description & " ***"

WScript.Quit(1)

End If

Set oPath = CreateObject("WbemScripting.SWbemObjectPath")

oPath.Path = sSiteObjectPath

sSitePath = oPath.Keys.Item("")

Set oVirtualDir = oProvider.Get("IIsWebVirtualDirSetting='" & _

 sSitePath & "/ROOT'")

oVirtualDir.AuthFlags = 5 ' AuthNTLM + AuthAnonymous

oVirtualDir.EnableDefaultDoc = True

oVirtualDir.DirBrowseFlags = &H4000003E ' date, time, size, _

 extension, longdate

oVirtualDir.AccessFlags = 513 ' read, script

oVirtualDir.AppFriendlyName = "Root Application"

oVirtualDir.Put_()

Set oServer = oProvider.Get(sSiteObjectPath)

oServer.Start

WScript.Echo "Complete"

Again, we’ll walk through what this script is doing. It starts by connecting to the namespace,
and retrieving the IIsWebService class.

set oLocator = CreateObject("WbemScripting.SWbemLocator")

set oProvider = oLocator.ConnectServer("Server2", "root/MicrosoftIISv2")

set oService = oProvider.Get("IIsWebService='W3SVC'")

The script then sets up the bindings for a new Web site. A binding is a unique combination of
IP address, port, and host header on which this site will be accessed. Here, the script is getting
a new instance of the ServerBinding class to populate it.

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 377

oBindings = Array(0)

Set oBindings(0) = oProvider.Get("ServerBinding").SpawnInstance_()

The script next sets a blank IP address (meaning all unassigned IP addresses will be used), a
blank hostname, and a specific port. This information is represented as an array.

oBindings(0).IP = ""

oBindings(0).Port = "8383"

oBindings(0).Hostname = ""

Next the script asks the Web service to create a new Web site. It passes the name for the site,
the bindings array, and the file system path to the new site’s root folder. Error handling ends
the script if this operation isn’t completed. The variable sSiteObjectPath will contain the WMI
path to the newly created Web site.

Dim sSiteObjectPath

sSiteObjectPath = oService.CreateNewSite("NewWebSite", _

 oBindings, "C:\Inetpub\Wwwroot")

If Err Then

WScript.Echo "*** Error Creating Site: " & Hex(Err.Number) & _

 ": " & Err.Description & " ***"

WScript.Quit(1)

End If

The script now creates a new WMI object path object, and sets it to equal the newly created
site. This is used to retrieve the IIS metabase path of the site.

Set oPath = CreateObject("WbemScripting.SWbemObjectPath")

oPath.Path = sSiteObjectPath

sSitePath = oPath.Keys.Item("")

Using the new metabase path, the script asks the IIS WMI provider to get the IisWebVirtual-
DirSetting class of the new site. Specifically, it retrieves the site’s roto folder. Remember that
this class contains writable properties, so we can configure the site’s properties.

Set oVirtualDir = oProvider.Get("IIsWebVirtualDirSetting='" & _

 sSitePath & "/ROOT'")

A number of properties are set, including authentication level, default document, directory
browsing flags, access flags, and the site’s application name. The Put method saves the
changes.

oVirtualDir.AuthFlags = 5 ' AuthNTLM + AuthAnonymous

oVirtualDir.EnableDefaultDoc = True

oVirtualDir.DirBrowseFlags = &H4000003E ' date, time, size, _

 extension, longdate

oVirtualDir.AccessFlags = 513 ' read, script

oVirtualDir.AppFriendlyName = "Root Application"

oVirtualDir.Put_()

378 Part III: Advanced Scripting Techniques, Tools, and Technologies

Finally, the provider is asked to retrieve the newly created and configured Web site so that it
can be started.

Set oServer = oProvider.Get(sSiteObjectPath)

oServer.Start

WScript.Echo "Complete"

It’s a lot to do, but when you break it down, the script follows the same process that you’d go
through to manually create a new Web site.

Now we will focus on backing up the metabase. The metabase backup functionality has sev-
eral options; for example, you can include child keys of the backed-up portion of the meta-
base, or include inherited properties. We usually define these values as named constants to
make them easier to use.

Const EXPORT_CHILDREN = 0

' Adds properties of child keys to the export file.

Const EXPORT_INHERITED = 1

' Adds inherited properties of the exported keys to the export file.

Const EXPORT_NODE_ONLY = 2

' Does not add subkeys of the specified key to the export file.

You can also assign a password to the metabase backup.

sPassword = "ExportingPassw0rd"

This password will be used to later import the configuration, if you need to do so. You must
tell IIS which portion of the metabase you want to export. You’ll use a metabase path to do so.
For example, here’s how to export the custom logging portion of the metabase configuration.

sMetabasePath = "/lm/logging/custom logging"

In this example, lm is the root name of the IIS computer, which is why it appears at the
beginning of the path. Performing the backup is just a matter of connecting to the IIS WMI
namespace, retrieving the IisComputer instance that represents IIS, and asking IIS to export
the selected portion of the metabase.

set oLocator = CreateObject("WbemScripting.SWbemLocator")

set oProvider = oLocator.ConnectServer("Server2", "root/MicrosoftIISv2")

Set oComputer = oProvider.get("IIsComputer='LM'")

oComputer.Export sPassword, sFilePath, sMetabasePath, iFlags

Listing 13-27 is the entire, completed script.

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 379

Listing 13-27 Export IIS Metabase
Const EXPORT_CHILDREN = 0

' Adds properties of child keys to the export file.

Const EXPORT_INHERITED = 1

' Adds inherited properties of the exported keys to the export file.

Const EXPORT_NODE_ONLY = 2

' Does not add subkeys of the specified key to the export file.

Dim sPassword, sFilePath, sMetabasePath, iFlags

sPassword = "ExportingPassw0rd"

' Use this password to import the configuration.

sFilePath = "C:\exported.xml"

sMetabasePath = "/lm/logging/custom logging"

' As represented in the metabase.xml file.

iFlags = EXPORT_NODE_ONLY OR EXPORT_INHERITED

set oLocator = CreateObject("WbemScripting.SWbemLocator")

set oProvider = oLocator.ConnectServer("Server2", "root/MicrosoftIISv2")

Set oComputer = oProvider.get("IIsComputer='LM'")

oComputer.Export sPassword, sFilePath, sMetabasePath, iFlags

WScript.Echo "Exported the node at " & sMetabasePath & " to " & sFilePath

Imagine being able to run a script like this on a regular basis—perhaps as a scheduled task—to
regularly save portions of the IIS metabase for use in a disaster recovery scenario. That’s just
one use for a script like this, and it’s a good illustration of how scripting can make IIS easier to
manage.

Of course, you can do plenty of scripted IIS management without writing a line of VBScript
code. That’s because Windows Server 2003 includes a handful of command-line utilities, such
as iisweb, iisftp, and so forth, which can be used to automate the configuration of IIS. (These
utilities are, in fact, written in VBScript, illustrating the power of the language.) As a bonus, we
offer Listing 13-28 on the next page. This script creates a text file containing the names of IIS
servers, inserts an IIS command-line string, and executes that command against each IIS
server listed in the file. This provides mass administration of Web farms without having to
learn any VBScript whatsoever.

380 Part III: Advanced Scripting Techniques, Tools, and Technologies

Listing 13-28 Create Multi-IIS Administration Template
Dim sCommand

sCommand = "INSERT IIS COMMAND HERE"

Dim sFile

sFile = "c:\ListOfIISservers.txt"

Dim oFSO, oTS

Set oFSO = CreateObject("Scripting.FileSystemObject")

On Error Resume Next

Set oTS = oFSO.OpenTextFile(sFile)

If Err <> 0 Then

 WScript.Echo Err.Description

 WScript.Echo "** Couldn't open " & sFile

 WScript.Quit

End If

Dim sServer, oShell, oExex, sCmd

Set oShell = CreateObject("WScript.Shell")

Do Until oTS.AtEndOfStream

 sServer = oTS.ReadLine

 sCmd = Replace(sCommand,"%name%",sServer)

 WScript.Echo "Running against " & sServer

 Set oExec = oShell.Exec(sCmd & " /s " & sServer)

 Do While oExec.Status = 0

 WScript.Sleep 100

 Loop

 WScript.Echo " Completed with exit code " & oExec.ExitCode

Loop

oTS.Close

WScript.Echo "Completed."

Note This script is excerpted from Don’s book Windows Administrator’s Automation Toolkit
(Microsoft Press, 2005), which explains how to automate over 100 common Windows admin-
istrative tasks by using readymade tools and scripts.

The trick to using this script is to first test your IIS command-line tasks on a single computer.
Then substitute %name% for the server name in the command-line text. Paste the command-
line text into this script where indicated (on line 2). Then create a text file (C:\ListOfIISserv-
ers.txt, by default), and you’re ready to go.

More Info More IIS management scripts, including scripts for IIS 5.0, can be found at

http://www.microsoft.com/technet/scriptcenter/scripts/iis/default.mspx

(This link is included on the companion CD; click Script Repository-Internet Information Server.)

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 381

Managing Printing
Windows XP and Windows Server 2003 include a new Win32_Printer class that provides
some great administrative capabilities for managing print queues, print jobs, and so forth. The
class exposes methods that can pause and resume a print queue. For example, Listing 13-29
pauses a print queue (or printer, to use the correct Windows terminology).

Listing 13-29 Pause a Print Queue
Dim strServer, objWMI, strQueue, colPrinters, objPrinter

strServer = "."

strQueue = "HP LaserJet 5"

Set objWMI = GetObject("winmgmts:\\" & _

 strServer & "\root\cimv2")

Set colPrinters = objWMI.ExecQuery _

 ("SELECT * FROM Win32_Printer WHERE Name = '" & _

 strQueue & "'")

For Each objPrinter In colPrinters

 objPrinter.Pause

Next

The WHERE clause in the WQL query specifies the queue to retrieve. Then, the colPrinters col-
lection would contain only one instance of the class to be paused. Of course, if you needed to
pause every queue on the targeted server, you’d simply remove the WHERE clause. As written,
this script affects the local computer, but you could change the strComputer variable to target
a server. Listing 13-30 resumes a print queue by simply changing the method call from Pause
to Resume.

Listing 13-30 Resume a Print Queue
Dim strServer, objWMI, strQueue, colPrinters, objPrinter

strServer = "."

strQueue = "HP LaserJet 5"

Set objWMI = GetObject("winmgmts:\\" & _

 strServer & "\root\cimv2")

Set colPrinters = objWMI.ExecQuery _

 ("SELECT * FROM Win32_Printer WHERE Name = '" & _

 strQueue & "'")

For Each objPrinter In colPrinters

 objPrinter.Resume

Next

You can also cancel all jobs in a print queue. This can be especially useful if you’re experienc-
ing problems with a server. Listing 13-31 on the next page is similar to Listing 13-29 and
13-30, but it uses a different method call. Additionally, Listing 13-31 has been modified to
prompt for a server and queue name, making it a more immediately useful administrative tool.

382 Part III: Advanced Scripting Techniques, Tools, and Technologies

Listing 13-31 Cancel Jobs in a Print Queue
Dim strServer, objWMI, strQueue, colPrinters, objPrinter

strServer = InputBox("Server name to target?")

strQueue = InputBox("Name of queue?",,"HP LaserJet 5")

Set objWMI = GetObject("winmgmts:\\" & _

 strServer & "\root\cimv2")

Set colPrinters = objWMI.ExecQuery _

 ("SELECT * FROM Win32_Printer WHERE Name = '" & _

 strQueue & "'")

For Each objPrinter In colPrinters

 objPrinter.CancelAllJobs

Next

Tip You might ask yourself why you’d need a script to do this when Windows has a perfectly
good graphical user interface that does the same thing. (In fact, Windows Server 2003 Release
2 provides an entire printer management console.) Suppose you want your help desk to be
able to delete jobs in a print queue, but you don’t want to give them direct permissions to do
so. You can take a script such as the one in Listing 13-31, package it (by using a script packager
available in products like iTripoli AdminScriptEditor or SAPIEN PrimalScript 4 Professional),
and include alternate credentials in the package. By running the package (a standalone
executable), the help desk can access the script to perform this task without the necessary
permissions.

The Win32_Printer class also exposes a number of properties that describe the capabilities of
a print device. For example, Listing 13-32 displays a print device’s resolution, collation capa-
bilities, duplication capabilities, and name.

Listing 13-32 Check Print Device Capabilities
Dim strServer, objWMI, strQueue, colPrinters, objPrinter

strServer = "."

strQueue = "HP LaserJet 5"

Set objWMI = GetObject("winmgmts:\\" & _

 strServer & "\root\cimv2")

Set colPrinters = objWMI.ExecQuery _

 ("SELECT * FROM Win32_Printer WHERE Name = '" & _

 strQueue & "'")

For Each objPrinter In colPrinters

 Script.Echo " Printer: " & objPrinter.Name

 WScript.Echo "Collation: " & objPrinter.Collate

 WScript.Echo "Duplexing: " & objPrinter.Duplex

 WScript.Echo "Horiz res: " & _

 objPrinter.HorizontalResolution

 WScript.Echo " Vert res: " & _

 objPrinter.VerticalResolution

Next

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 383

You can also redirect a print job from one device to another. To do this, you’ll need to know
the name of both the original device and the target device. Specify the original queue name
and the port where the job should be redirected.

strQueue = "HP LaserJet 5"

strNewPort = "IP_192.168.0.25"

Then simply set the PortName property of the queue, and call the Put method to save the
change.

objPrinter.PortName = strNewPort

objPrinter.Put_

Listing 13-33 is the complete script. This is a very useful tool; we’ve used it to temporarily redi-
rect the queue to a different device of the same make and model, keeping users printing while
the original device was offline.

Listing 13-33 Redirect a Print Queue
Dim strServer, objWMI, strQueue, colPrinters

Dim objPrinter, strNewPort

strServer = "."

strQueue = "HP LaserJet 5"

strNewPort = "IP_192.168.0.25"

Set objWMI = GetObject("winmgmts:\\" & _

 strServer & "\root\cimv2")

Set colPrinters = objWMI.ExecQuery _

 ("SELECT * FROM Win32_Printer WHERE Name = '" & _

 strQueue & "'")

For Each objPrinter In colPrinters

 objPrinter.PortName = strNewPort

 objPrinter.Put_

Next

Windows also has a WMI class named Win32_TCPIPPrinterPort, which allows you to create,
delete, and modify TCP/IP printer ports on the system. This can be useful for automating the
configuration of new print servers in your organization. A third class, Win32_PrinterDriver,
exposes print device driver functionality and allows you to enumerate installed drivers, install
a new driver, and remove unnecessary drivers. This class requires some special handling, so
we’ll give you a quick example of installing a new driver.

You first make a standard WMI connection to the WMI service on the server where you want
to install the driver. Use the Get method rather than a query so that you can retrieve the
Win32_PrinterDriver class itself and not an existing instance.

Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\SERVER1\root\cimv2")

Set objDriver = objWMIService.Get("Win32_PrinterDriver")

384 Part III: Advanced Scripting Techniques, Tools, and Technologies

Note that the impersonation directive probably isn’t necessary because it’s the default, but
installing a printer driver is a security-sensitive task, so it’s best to make sure. To activate the
LoadDriver security privilege, add it to the WMI services’ Security object (specifically, the
Privileges property).

objWMIService.Security_.Privileges.AddAsString _

 "SeLoadDriverPrivilege", True

Next, specify a name and version for the driver. This must be the name of a driver that’s
already physically installed or accessible on the server—the software must be physically
present. This is easy for drivers that are included with Windows; for others you’ll need to copy
them first. This script we’re building won’t run a setup executable; it expects the software to
already be in the proper place.

objDriver.Name = "HP LaserJet 5"

objDriver.SupportedPlatform = "Windows NT x86"

objDriver.Version = "3"

Also notice that we specified a SupportedPlatform property. Keep in mind that Windows sup-
ports the installation of multiple drivers for a print device; this allows a print server to host the
drivers that will be needed by clients. Here, we specified Windows NT x86, which covers most
versions of Windows back to Windows NT and Windows 2000. We could also specify Win-
dows IA64, for example, to specify the drivers for an Itanium 64-bit system.

We finish by using the AddPrinterDriver method. Essentially, we’re asking the new instance
we’ve created to add itself to the system. It looks funny, but works great.

errResult = objDriver.AddPrinterDriver(objDriver)

Listing 13-34 is the complete script.

Listing 13-34 Add a Printer Driver
Set objWMIService = GetObject("winmgmts:" _

 & "{impersonationLevel=impersonate}!\\SERVER1\root\cimv2")

Set objDriver = objWMIService.Get("Win32_PrinterDriver")

objWMIService.Security_.Privileges.AddAsString _

 "SeLoadDriverPrivilege", True

objDriver.Name = "HP LaserJet 5"

objDriver.SupportedPlatform = "Windows NT x86"

objDriver.Version = "3"

errResult = objDriver.AddPrinterDriver(objDriver)

More Info Additional client-side print management script samples can be found at

http://www.microsoft.com/technet/scriptcenter/scripts/printing/client/default.mspx

(This link is included on the companion CD; click Client-Side Printing.)

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 385

Using Windows Update Services
Windows XP Service Pack 2 and Windows Server 2003 Service Pack 1 introduced Automatic
Updates software. (A newer version is available from the Microsoft Update Web site at http:/
/update.microsoft.com.) This new software corresponds with the Windows Software Update
Services (WSUS) server software. Although the server software is primarily built for use by
managed code (such as VB.NET and C#), the Automatic Updates client is now exposed
through a set of COM objects, which are readily accessible to scripts. The practical upshot of
this is that you can write a VBScript that manages the Automatic Updates client on Windows
XP and Windows Server 2003 computers.

At its simplest, you might use this new capability as shown in Listing 13-35. This listing simply
changes the settings of the Automatic Updates client to install downloaded updates on Tues-
days at 4:00 AM local time.

Listing 13-35 Configure Automatic Updates Settings
Set objAutoUpdate = CreateObject("Microsoft.Update.AutoUpdate")

Set objSettings = objAutoUpdate.Settings

objSettings.ScheduledInstallationDay = 3

objSettings.ScheduledInstallationTime = 4

objSettings.Save

Of course, because this information is exposed through a COM object and not WMI, perform-
ing this task from a remote computer can be complicated. You can specify a remote computer
in the CreateObject call.

Set objAutoUpdate = _

 CreateObject("Microsoft.Update.AutoUpdate", "\\Client2")

You might just as easily place this short script into a login script that’s assigned to all your
computers. That way, you’re assured of these settings always being in effect. Of course, the
Automatic Updates client can also be configured through Group Policy, so you have a number
of ways to deploy these settings and ensure that your client computers are being automatically
updated.

Listing 13-36 on the next page shows how the CreateObject function can be used to instantiate
COM objects on remote computers. This script is designed to connect to every computer in
Active Directory and display its Automatic Updates configuration, including notification level,
installation date and time, and so forth. (This was built by using the wrapper script at the
beginning of this chapter.)

386 Part III: Advanced Scripting Techniques, Tools, and Technologies

Listing 13-36 Display Automatic Updates Inventory
' requires Windows XP Service Pack 2 or later

'connect to the root of AD

Dim rootDSE, domainObject

Set rootDSE=GetObject("LDAP://RootDSE")

domainContainer = rootDSE.Get("defaultNamingContext")

Set oDomain = GetObject("LDAP://" & domainContainer)

'start with the domain root

WorkWithObject(oDomain)

Sub WorkWithObject(oContainer)

 Dim oADObject

 For Each oADObject in oContainer

 Select Case oADObject.Class

 Case "computer"

 'oADObject represents a COMPUTER object;

 'do something with it

 WScript.Echo String(40,"-")

 WScript.Echo oADObject.cn

 On Error Resume Next

 Set objWU = CreateObject("Microsoft.Update.AutoUpdate", _

 "\\" & oADObject.cn)

 If Err <> 0 Then

 WScript.Echo Err.Description

 Else

 Set objSetting = objWU.Settings

 WScript.Echo "Notification: " & objSetting.NotificationLevel

 WScript.Echo "Read-only: " & objSetting.ReadOnly

 WScript.Echo "Required: " & objSetting.Required

 WScript.Echo "Install time: " & _

 objSetting.ScheduledInstallationDay

 WScript.Echo "Install day: " & _

 objSetting.ScheduledInstallationTime

 End If

Case "organizationalUnit" , "container"

 'oADObject is an OU or container...

 'go through its objects

 WorkWithObject(oADObject)

 End Select

 Next

End Sub

Of course, this script isn’t terribly efficient, because it can only connect to one computer at a
time. Also, the Windows Firewall might keep this script from working at all. To help resolve
both problems, we created Listing 13-37. It is designed to be deployed as a login script, by-
passing the Windows Firewall by eliminating the need for an incoming remote connection.
Also, performance is improved because each computer performs its own inventory, writing
the information to a Microsoft Access database located on a file server. (The default location is
\\fileserver\share\wuinventory.mdb; you should change that to something appropriate.)

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 387

On the CD We’ve included an empty Access database named wuinventory.mdb with the
proper table and column layouts. You’ll find it on the CD along with the script.

Listing 13-37 Display Automatic Updates Database Inventory
'assumes Access drivers installed on all clients

'assumes Access database has a table named Updates

'assumes table has columns for Name,Required,ReadOnly,

' Day, and Time. All columns are assumed to be text.

On Error Resume Next

Dim strCN, objWU, objSet, objNet, strComputer

Dim strSQL, objCN

'set connection String

strCN = "Provider=Microsoft.Jet.Oledb.4.0;" & _

 "Data Source=\\fileserver\share\wuinventory.mdb;"

'open WU objects

Set objWU = CreateObject("Microsoft.Update.AutoUpdate")

Set objSet = objWU.Settings

Set objNet = CreateObject("WScript.Network")

'get computer name

strComputer = objNet.ComputerName

'open database

Set objCN = CreateObject("ADODB.Connection")

objCN.Open strCN

'delete existing row

strSQL = "DELETE FROM Updates WHERE Name = '" & _

 strComputer & "'")

objCN.Execute strSQL

'build new row

strSQL = "INSERT INTO Updates (Name,Required,ReadOnly" & _

 ",Day,Time) VALUES("

strSQL = strSQL & "'" & strComputer & "',"

strSQL = strSQL & "'" & objSet.Required & "',"

strSQL = strSQL & "'" & objSet.ReadOnly & "',"

strSQL = strSQL & "'" & objSet.ScheduledInstallationDay & "',"

strSQL = strSQL & "'" & objSet.ScheduledInstallationTime & "')"

'insert new row

objCN.Execute strSQL

objCN.Close

The script starts by connecting to the database by using an OLE DB connection string.

strCN = "Provider=Microsoft.Jet.Oledb.4.0;" & _

 "Data Source=\\fileserver\share\wuinventory.mdb;"

388 Part III: Advanced Scripting Techniques, Tools, and Technologies

The script then instantiates the Automatic Updates client’s COM object and retrieves its set-
tings. It also gets the local computer name from the WshNetwork object.

Set objWU = CreateObject("Microsoft.Update.AutoUpdate")

Set objSet = objWU.Settings

Set objNet = CreateObject("WScript.Network")

strComputer = objNet.ComputerName

The database connection is opened, and any existing rows with the same computer name is
deleted. This ensures that each computer will be listed only once in the database.

Set objCN = CreateObject("ADODB.Connection")

objCN.Open strCN

strSQL = "DELETE FROM Updates WHERE Name = '" & _

 strComputer & "'")

objCN.Execute strSQL

A SQL INSERT statement containing the computer name and values from the Automatic
Updates settings is placed in a string variable.

strSQL = "INSERT INTO Updates (Name,Required,ReadOnly" & _

 ",Day,Time) VALUES("

strSQL = strSQL & "'" & strComputer & "',"

strSQL = strSQL & "'" & objSet.Required & "',"

strSQL = strSQL & "'" & objSet.ReadOnly & "',"

strSQL = strSQL & "'" & objSet.ScheduledInstallationDay & "',"

strSQL = strSQL & "'" & objSet.ScheduledInstallationTime & "')"

Finally, the SQL statement is executed to add the computer to the database, and the database
connection is closed.

objCN.Execute strSQL

objCN.Close

A script like this can help “close the loop” on patch management; that is, it can help ensure
that the settings are, in fact, configured the way you want on each computer. If you’ve centrally
configured these settings, they should be consistent across your network. You can quickly
spot any anomalous settings by opening the Access database and scrolling through the table.

More Info The TechNet Script Center includes additional Windows Update management
scripts at

http://www.microsoft.com/technet/scriptcenter/scripts/sus/client/default.mspx

(This link is included on the companion CD; click Windows Update Client-Side Management.)

Chapter 13: Advanced Scripting in Windows XP and Windows Server 2003 389

Summary
Windows Server 2003 and Windows XP are the most accessible versions of Windows ever, at
least in terms of script-based management. With the techniques you learned in this chapter,
you can script numerous administrative tasks that are otherwise tedious or difficult, and make
administration easier. To help ensure that future versions of Windows are even more open
to script-based management, communicate with your regional Microsoft office and other
Microsoft representatives, and let them know that you appreciate the work that went into
making Windows XP and Windows Server 2003 more accessible to scripts. Tell them that you
look forward to future versions going even further. Hopefully, a future version of this chapter
covering scripting in the next version of Windows will be large enough to fill an entire book.

Part IV
Scripting for the Enterprise

In this part:

Chapter 14: Group Policy Management Scripting.393

Chapter 15: Exchange 2003 Scripting .425

Chapter 16: Microsoft Operations Manager 2005 Scripting463

Chapter 17: Virtual Server 2005 Scripting. .483

393

Chapter 14

Group Policy Management
Scripting

In this chapter:

Introducing Group Policy Management Scripting . 394

Scripting GPO Permissions . 407

Scripting GPO Reports . 411

Scripting GPO Backups . 412

Scripting GPO Restores . 412

Scripting Resultant Set of Policy . 413

Viewing GPO Scripting in Action . 414

Summary . 423

Group Policy management can be a full-time job in most medium to large enterprises. For-
tunately, Microsoft Windows Server 2003 includes the Group Policy Management Console
(GPMC). The GPMC was a boon to system administrators, and it had the added benefit of a
scripting interface. Now Group Policy objects (GPOs) can be managed with VBScript. We’ll
explore GPMC scripting in this chapter.

Group Policy was one of the primary benefits most enterprises gained by moving to Microsoft
Windows 2000. Unfortunately, the management tools for Group Policy were weak. With the
arrival of Windows Server 2003, Microsoft introduced a totally new Group Policy Manage-
ment Console. With it, you can create, back up, copy, move, and generate reports on all GPOs
in the enterprise. As a bonus, almost all the functionality is also available through a scripting
interface.

Note We’re assuming you are already familiar with the Group Policy Management Console
and Group Policy in general. This chapter focuses on managing Group Policy by using VBScript.

394 Part IV: Scripting for the Enterprise

Introducing Group Policy Management Scripting
First of all, let’s get the bad news out of the way. Microsoft does not offer a scripting interface
for creating or editing a GPO. You cannot write a script to disable access to the control panel,
remove the Run command from the Start menu, or disable registry editing tools. What you
can do with GPMC scripting is back up and restore GPOs, set GPO permissions, build GPO
reports, and get Resultant Set of Policy (RSOP) for users and computers.

When you install the Group Policy Management Console, a Scripts folder is created under
%ProgramFiles%\GPMC. Microsoft provides over 30 excellent scripts that you can use imme-
diately to manage Group Policy in your enterprise. These scripts are in WSF format, so they
can take arguments like an organizational unit (OU) name at run time. We won’t spend any
time on these scripts, even though we might cover some of the same core functionality.

Note The Group Policy Management Console is included with Windows Server 2003, but it
can also be freely downloaded from

http://www.microsoft.com/windowsserver2003/gpmc/default.mspx

(This link is included on the companion CD; click Enterprise Management with Group Policy
Management Console.)

Group Policy Management Scripting Requirements

To use the GPMC, you must be running Windows Server 2003 or Microsoft Windows XP and
have the Microsoft .NET Framework installed. If you are still running XP SP1, you should
install the patch referenced in Knowledge Base article Q326469. The GPMC will not run on
Microsoft Windows 2000 Professional or Microsoft Windows 2000 Server. However, you can
use the console on an XP desktop to manage Group Policy in a Windows 2000 domain. Of
course, you need appropriate credentials either as a domain administrator or through delega-
tion. It is possible to delegate Group Policy management rights.

Best Practices Install the GPMC on an a secure Windows XP SP2 desktop that is in the
same site as the domain controller that holds the PDC Emulator role.

Group Policy Management Console Object Model

The GPMC object model is a bit complex, but fortunately, it is pretty well documented. Figure
14-1 illustrates the object model. There is plenty of information in the Help file as well as
MSDN Library. Unfortunately, much of the documentation is aimed at application develop-
ers, not administrators hoping to develop VBScript. We won’t go over the complete object
model, but we will explore the basics.

Chapter 14: Group Policy Management Scripting 395

Figure 14-1 GPMC object model

GPM

GPMConstants

GPMSearchCriteria

GPMSitesContainer

GPMSOMCollection

GPMSOM

GPMBackupDir

GPMBackupCollection

GPMBackup

GPMPermission

GPMTrustee

GPMRSOP

GPMCSECollection

GPMClientSideExtension

GPMMigrationTable

GPMMapEntryCollection

GPMMapEntry

GPMWMIFilterCollection

GPMWMIFilter

GPMSecurityInfo

GPMPermission

GPMGPOCollection

GPMGPO

GPMSecurityInfo

GPMPermission

GPMSecurityInfo

GPMPermission

GPMGPOLink

GPMGPOLinksCollection

GPMSOM

GPMSOMCollection

GPMDomain

396 Part IV: Scripting for the Enterprise

More Info The GPMC object model is documented in the Help file gpmc.chm, and at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/gpmc/gpmc/
gpmc_object_model.asp

(This link is on the companion CD; click GPMC Object Model).

You will primarily be working with the GPM object, which is instantiated like this.

set GPM=CreateObject("GPMGMT.GPM")

All other objects are created from the GPM object. With this object model, you can do the
following:

■ Back up, restore, import, and copy GPOs.

■ Create and delete GPOs and WMI filters.

■ Link GPOs and WMI filters to organizational units, domains, and sites.

■ Search for GPOs.

■ Report GPO settings.

■ Manage GPO permissions and delegations.

■ Get Resultant Set of Policy for a GPO.

■ Create and modify GPO migration tables.

We’ll cover some of the basics that most administrators will want to understand.

Constants

As you can probably judge from the object model, GPMC scripting is a complex topic, espe-
cially in regards to security permissions and access control lists. The object model requires
numerous constants that define both properties, such as PermGPOApply, and methods, such
as get_ProcessSecurity. Fortunately, you don’t have to define every constant in the beginning of
your script. The object model includes an object called GPMConstants. You will need to instan-
tiate this object at the beginning of your script by using the GetConstants method.

Set GPM=CreateObject("GPMGMT.GPM")

set gpmConstants=GPM.GetConstants

As you work through the sample scripts and read the documentation, you will see where dif-
ferent constant values are required. Having a script editor that shows COM object properties
and methods as you code will be invaluable when working with GPMC scripting. Table 14-1

Chapter 14: Group Policy Management Scripting 397

defines the method constants, and Table 14-2 defines the property constants. This informa-
tion is also available through MSDN and the GPMC documentation.

Table 14-1 GPMC Method Constants

Method Constant Description

get_DestinationOptionByRelativeName Retrieves the constant value corresponding to
the GPMDestinationOption of opDestination-
ByRelativeName

get_DestinationOptionNone Retrieves the constant value corresponding to
the GPMDestinationOption of opDestination-
None

get_DestinationOptionBySameAsSource Retrieves the constant value corresponding to
the GPMDestinationOption of opDestination-
SameAsSource

get_DestinationOptionSet Retrieves the constant value corresponding to
the GPMDestinationOption of opDestination-
Set

get_EntryTypeComputer Retrieves the constant value corresponding to
the GPMEntryType of typeComputer

get_EntryTypeGlobalGroup Retrieves the constant value corresponding to
the GPMEntryType of typeGlobalGroup

get_EntryTypeLocalGroup Retrieves the constant value corresponding to
the GPMEntryType of typeLocalGroup

get_EntryTypeUniversalGroup Retrieves the constant value corresponding to
the GPMEntryType of typeUniversalGroup

get_EntryTypeUNCPath Retrieves the constant value corresponding to
the GPMEntryType of typeUNCPath

get_EntryTypeUnknown Retrieves the constant value corresponding to
the GPMEntryType of typeUnknown

get_EntryTypeUser Retrieves the constant value corresponding to
the GPMEntryType of typeUser

get_PermGPOApply Retrieves the constant value corresponding to
the permGPOApply permission type

get_PermGPOCustom Retrieves the constant value corresponding to
the permGPOCustom permission type

get_PermGPOEdit Retrieves the constant value corresponding to
the permGPOEdit permission type

get_PermGPOEditSecurityAndDelete Retrieves the constant value corresponding to
the permGPOEditSecurityAndDelete permis-
sion type

get_PermGPORead Retrieves the constant value corresponding to
the permGPORead permission type

get_PermSOMGPOCreate Retrieves the constant value corresponding to
the permSOMGPOCreate permission type

398 Part IV: Scripting for the Enterprise

get_PermSOMLink Retrieves the constant value corresponding to
the permSOMLink permission type

get_PermSOMLogging Retrieves the constant value corresponding to
the permSOMLogging permission type

get_PermSOMPlanning Retrieves the constant value corresponding to
the permSOMPlanning permission type

get_PermSOMWMICreate Retrieves the constant value corresponding to
the permSOMWMICreate permission type

get_PermSOMWMIFullControl Retrieves the constant value corresponding to
the permSOMWMIFullControl permission type

get_PermWMIFilterCustom Retrieves the constant value corresponding to
the permWMIFilterCustom permission type

get_PermWMIFilterEdit Retrieves the constant value corresponding to
the permWMIFilterEdit permission type

get_PermWMIFilterFullControl Retrieves the constant value corresponding to
the permWMIFilterFullControl permission type

get_SearchPropertyBackupMostRecent Retrieves the constant value corresponding to
the backupMostRecent search property

get_SearchPropertyGPODisplayName Retrieves the constant value corresponding to
the GPODisplayName search property

get_SearchPropertyGPODomain Retrieves the constant value corresponding to
the GPODomain search property

get_SearchPropertyGPOEffectivePermissions Retrieves the constant value corresponding to
the GPOEffectivePermissions search property

get_SearchPropertyGPOID Retrieves the constant value corresponding to
the GPOID search property

get_SearchPropertyGPOPermissions Retrieves the constant value corresponding to
the GPOPermissions search property

get_SearchPropertyGPOUserExtensions Retrieves the constant value corresponding to
the GPOUserExtensions search property

get_SearchPropertyGPOWMIFilter Retrieves the constant value corresponding to
the GPOWMIFilter search property

get_SearchPropertySOMLinks Retrieves the constant value corresponding to
the somLinks search property

get_SearchOpContains Retrieves the constant value corresponding to
the opContains search operator

get_SearchOpEquals Retrieves the constant value corresponding to
the opEquals search operator

get_SearchOpNotContains Retrieves the constant value corresponding to
the opNotContains search operator

get_SearchOpNotEquals Retrieves the constant value corresponding to
the opNotEquals search operator

Table 14-1 GPMC Method Constants

Method Constant Description

Chapter 14: Group Policy Management Scripting 399

get_SOMDomain Retrieves the constant value corresponding to
the somDomain SOM type

get_SOMOU Retrieves the constant value corresponding to
the somOU SOM type

get_SOMSite Retrieves the constant value corresponding to
the somSite SOM type

get_DoNotValidateDC Retrieves the value of the DoNotValidateDC
property

get_SecurityFlags Retrieves the value of the SecurityFlags
property

get_UseAnyDC Retrieves the constant value corresponding to
the UseAnyDC property

get_DoNotUseW2KDC Retrieves the constant value corresponding to
the DoNotUseW2KDC property

get_UsePDC Retrieves the constant value corresponding to
the UsePDC property

get_SearchhPropertyGPOComputerExtensions Retrieves the constant value corresponding to
the GPOComputerExtensions search property

get_ReportHTML Retrieves the constant value corresponding to
the ReportHTML property

get_ReportXML Retrieves the constant value corresponding to
the ReportXML property

get_RSOPModeUnknown Retrieves the constant value corresponding to
the RSOPModeUnknown property

get_RSOPModePlanning Retrieves the constant value corresponding to
the RSOPModePlanning property

get_RSOPModeLogging Retrieves the constant value corresponding to
the RSOPModeLogging property

get_RSOPLoggingNoComputer Retrieves the constant value corresponding to
the RsopLoggingNoComputer property

get_RSOPLoggingNoUser Retrieves the constant value corresponding to
the RsopLoggingNoUser property

get_RSOPPlanningAssumeSlowLink Retrieves the constant value corresponding to
the RSOP_PLANNING_ASSUME_SLOW_LINK
property

get_RSOPPlanningLoopbackOption Retrieves the constant value corresponding to
the RsopPlanningLoopbackOption property

get_RSOPPlanningAssumeUserWQLFilterTrue Retrieves the constant value corresponding to
the RsopPlanningAssumeUserWQLFilterTrue
property

Table 14-1 GPMC Method Constants

Method Constant Description

400 Part IV: Scripting for the Enterprise

get_RSOPPlanningAssumeCompWQLFilterTrue Retrieves the constant value corresponding to
the RsopPlanningAssumeCompWQLFilterTrue
property

get_MigrationTableOnly Retrieves the constant value corresponding to
the MigrationTableOnly property

get_ProcessSecurity Retrieves the constant value corresponding to
the ProcessSecurity property

Table 14-2 GPMC Property Constants

Property Constant Description

DestinationOptionByRelativeName Value corresponding to the GPMDestinationOption of
opDestinationByRelativeName

DestinationOptionNone Value corresponding to the GPMDestinationOption of
opDestinationNone

DestinationOptionSameAsSource Value corresponding to the GPMDestinationOption of
opDestinationSameAsSource

DestinationOptionSet Value corresponding to the GPMDestinationOption of
opDestinationSet

DoNotUseW2KDC Constant value corresponding to the DoNotUseW2KDC
property

DoNotValidateDC Constant value corresponding to the DoNotValidateDC
property

EntryTypeComputer Value corresponding to the GPMEntryType of type-
Computer

EntryTypeGlobalGroup Value corresponding to the GPMEntryType of type-
GlobalGroup

EntryTypeLocalGroup Value corresponding to the GPMEntryType of type-
LocalGroup

EntryTypeUNCPath Value corresponding to the GPMEntryType of type-
UNCPath

EntryTypeUniversalGroup Value corresponding to the GPMEntryType of type-
UniversalGroup

EntryTypeUnknown Value corresponding to the GPMEntryType of type-
Unknown.

EntryTypeUser Value corresponding to the GPMEntryType of typeUser

MigrationTableOnly Value corresponding to the
GPM_MIGRATIONTABLE_ONLY constant

PermGPOApply Constant value corresponding to the permGPOApply
permission type

PermGPOCustom Constant value corresponding to the permGPOCustom
permission type

Table 14-1 GPMC Method Constants

Method Constant Description

Chapter 14: Group Policy Management Scripting 401

PermGPOEdit Constant value corresponding to the permGPOEdit per-
mission type

PermGPOEditSecurityAndDelete Constant value corresponding to the permGPOEdit-
SecurityAndDelete permission type

PermGPORead Constant value corresponding to the permGPORead
permission type

PermSOMGPOCreate Constant value corresponding to the permSOMGPO-
Create permission type

PermSOMLink Constant value corresponding to the permSOMLink
permission type

PermSOMLogging Constant value corresponding to the permSOMLogging
permission type

PermSOMPlanning Constant value corresponding to the permSOM-
Planning permission type

PermSOMWMICreate Constant value corresponding to the permSOMWMI-
Create permission type

PermSOMWMIFullControl Constant value corresponding to the permSOMWMI-
FullControl permission type

PermWMIFilterCustom Constant value corresponding to the permWMIFilter-
Custom permission type

PermWMIFilterEdit Constant value corresponding to the permWMIFilter-
Edit permission type

PermWMIFilterFullControl Constant value corresponding to the permWMIFilter-
FullControl permission type

ProcessSecurity Value corresponding to the GPM_PROCESS_SECURITY
constant

ReportHTML Constant value corresponding to the ReportHTML
property

ReportXML Constant value corresponding to the ReportXML
property

RSOPLoggingNoComputer Value corresponding to the RSOP_NO_USER constant

RSOPLoggingNoUser Value corresponding to the RSOP_NO_USER constant

RSOPModeLogging Constant value corresponding to the RSOPMode-
Logging property

RSOPModePlanning Constant value corresponding to the RSOPMode-
Planning property

RSOPModeUnknown Constant value corresponding to the RSOPMode-
Unknown property

RSOPPlanningAssumeCompWQLFilter-
True

Value corresponding to the
RSOP_PLANNING_ASSUME_COMP_WQLFILTER_TRUE
constant

RSOPPlanningAssumeSlowLink Value corresponding to the
RSOP_PLANNING_ASSUME_SLOW_LINK constant

Table 14-2 GPMC Property Constants

Property Constant Description

402 Part IV: Scripting for the Enterprise

RSOPPlanningAssumeUserWQLFilterTrue Value corresponding to the
RSOP_PLANNING_ASSUME_USER_WQLFILTER_TRUE
constant

RSOPPlanningLoopbackOption Value corresponding to either the
RSOP_PLANNING_ASSUME_LOOPBACK_MERGE
constant if vbMerge is VARIANT_TRUE, or the
RSOP_PLANNING_ASSUME_LOOPBACK_REPLACE
constant if vbMerge is VARIANT_FALSE

SearchOpContains Constant value corresponding to the opContains search
operator

SearchOpEquals Constant value corresponding to the opEquals search
operator

SearchOpNotContains Constant value corresponding to the opNotContains
search operator

SearchOpNotEquals Constant value corresponding to the opNotEquals
search operator

SearchPropertyBackupMostRecent Constant value corresponding to the backupMost-
Recent search property

SearchPropertyGPOComputerExtensions Constant value corresponding to the GPOComputer-
Extensions search property

SearchPropertyGPODisplayName Constant value corresponding to the GPODisplayName
search property

SearchPropertyGPODomain Constant value corresponding to the GPODomain
search property

SearchPropertyGPOEffectivePermissions Constant value corresponding to the GPOEffective-
Permissions search property

SearchPropertyGPOID Constant value corresponding to the GPOID search
property

SearchPropertyGPOPermissions Constant value corresponding to the GPOPermissions
search property

SearchPropertyGPOUserExtensions Constant value corresponding to the GPOUser-
Extensions search property

SearchPropertyGPOWMIFilter Constant value corresponding to the GPOWMIFilter
search property

SearchPropertySOMLinks Constant value corresponding to the somLinks search
property

SecurityFlags Representation of the portions of the security descrip-
tor to retrieve or set for a GPO. These values are re-
quired to call the IGPMGPO::GetSecurityDescriptor and
IGPMGPO::SetSecurityDescriptor functions (the GPMG-
PO.GetSecurityDescriptor and GPMGPO.SetSecurity-
Descriptor methods).

SOMDomain Constant value corresponding to the somDomain SOM
type

Table 14-2 GPMC Property Constants

Property Constant Description

Chapter 14: Group Policy Management Scripting 403

Listing 14-1 demonstrates GPMC constants. This script searches the current domain and lists
all the Group Policy objects.

Listing 14-1 List All Group Policy Objects
Dim GPM,gpmConstants,gpmDomain

dim collGPOS,gpmSearchCriteria,gpo,gpmResult

dim RootDSE,objDomain

set GPM=CreateObject("GPMGMT.GPM")

set gpmConstants=GPM.GetConstants

strFQDN=GetDomainFQDN

set gpmDomain=GPM.GetDomain(strFQDN,"",gpmConstants.UseAnyDC)

set gpmSearchCriteria=GPM.CreateSearchCriteria

set collGPOS=gpmDomain.SearchGPOs(gpmSearchCriteria)

wscript.Echo "Found " & collGPOS.Count & " group policy objects in " &_

gpmDomain.Domain & "(" & gpmDomain.DomainController & ")"

For Each gpo In collGPOS

 WScript.Echo gpo.Displayname & " [" & gpo.path & "]"

Next

WScript.Quit

'**

Function GetDomainFQDN()

 set RootDSE=GetObject("LDAP://RootDSE")

 DomainPath= RootDSE.Get("DefaultNamingContext")

 DomainPath=Replace(DomainPath,"DC=","")

 GetDomainFQDN=Replace(DomainPath,",",".")

End Function

The script starts by instantiating the GPM and GPMConstants objects.

set GPM=CreateObject("GPMGMT.GPM")

set gpmConstants=GPM.GetConstants

To search the domain, we need to know the fully qualified name of the domain, for example,
company.pri. We’ve written a function that takes the domain path from the default naming
context and converts it to a fully qualified domain name (FQDN). In other words, the func-
tion will convert DC=company,DC=pri to company.pri.

SOMOU Constant value corresponding to the somOU SOM type

SOMSite Constant value corresponding to the somSite SOM type

UseAnyDC Constant value corresponding to the UseAnyDC
property

UsePDC Constant value corresponding to the UsePDC property

Table 14-2 GPMC Property Constants

Property Constant Description

404 Part IV: Scripting for the Enterprise

Function GetDomainFQDN()

 set RootDSE=GetObject("LDAP://RootDSE")

 DomainPath= RootDSE.Get("DefaultNamingContext")

 DomainPath=Replace(DomainPath,"DC=","")

 GetDomainFQDN=Replace(DomainPath,",",".")

End Function

With this information, we can use the GetDomain method to connect to the domain and
create a gpmDomain object.

set gpmDomain=GPM.GetDomain(strFQDN,"",gpmConstants.UseAnyDC)

As you can see, the method takes several parameters. The first is the FQDN of the domain,
which we got from the function. The second parameter, which is blank in our example, is used
to specify a specific domain controller to connect to. Because we want the script to run in any
domain, we leave this blank. However, this means we can use the third parameter to specify
how we will find a domain controller. This flag is set by a constant. We can use gpmCon-
stants.UseAnyDC to reference the GPM_USE_ANYDC constant, which we would otherwise
have to define. By the way, we could have also used gpmConstants.UsePDC to specify a connec-
tion to the PDC emulator.

The script next instantiates a gpmSearchCriteria object (which we’ll cover later in this chapter).
We then call the SearchGPOS method to instantiate a GPO collection object.

set gpmSearchCriteria=GPM.CreateSearchCriteria

set collGPOS=gpmDomain.SearchGPOs(gpmSearchCriteria)

With this collection object, we can now loop through and display information about the col-
lection members, which will be GPO objects from the object model.

wscript.Echo "Found " & collGPOS.Count & " group policy objects in " &_

gpmDomain.Domain & "(" & gpmDomain.DomainController & ")"

For Each gpo In collGPOS

 WScript.Echo gpo.Displayname & " [" & gpo.path & "]"

Next

When you run the script from a command prompt with CScript, you should see output like
this.

Found 5 group policy objects in company.pri(DC02.company.pri)

Test Security [cn={20029756-EC91-44FB-B57C-

87A9A5584880},cn=policies,cn=system,DC=matrix,DC=local]

Default Domain Policy [cn={31B2F340-016D-11D2-945F-

00C04FB984F9},cn=policies,cn=system,DC=matrix,DC=local]

New Group Policy Object [cn={4962C921-BCFC-4B22-BF39-

8746D9CD8536},cn=policies,cn=system,DC=matrix,DC=local]

Default Domain Controllers Policy [cn={6AC1786C-016F-11D2-945F-

00C04fB984F9},cn=policies,cn=system,DC=matrix,DC=local]

Desktop Restrictions [cn={B171DED9-C308-45C5-A1B5-

48494C0B6DB5},cn=policies,cn=system,DC=matrix,DC=local]

Chapter 14: Group Policy Management Scripting 405

Scope of Management

The other important concept in GPMC scripting is Scope of Management (SOM). A SOM is a
site, domain, or OU that has one or more GPOs linked to it. A single GPO can be linked to one
or more SOMs. Listing 14-2 expands on the script in Listing 14-1 to find all the SOMs a spe-
cific GPO is linked to, and display that information.

Listing 14-2 List All Group Policy Objects and SOM Links
Dim GPM,gpmConstants,gpmDomain

dim collGPOS,gpmSearchCriteria,collSOMs

dim RootDSE,objDomain

Set GPM=CreateObject("GPMGMT.GPM")

set gpmConstants=GPM.GetConstants

strFQDN=GetDomainFQDN

set gpmDomain=GPM.GetDomain(strFQDN,"",gpmConstants.UsePDC)

set gpmSearchCriteria=GPM.CreateSearchCriteria

set collGPOS=gpmDomain.SearchGPOs(gpmSearchCriteria)

wscript.Echo "Found " & collGPOS.Count & " group policy objects in " &_

gpmDomain.Domain & "(" & gpmDomain.DomainController & ")"

For Each gpo In collGPOS

 WScript.Echo gpo.Displayname & " [" & gpo.id & "]"

 gpmSearchCriteria.Add gpmConstants.SearchPropertySOMLinks,_

 gpmConstants.SearchOpContains,gpo

 Set collSOMs=gpmDomain.SearchSOMs(gpmSearchCriteria)

 WScript.Echo "Linked to " & collSOMs.Count & " container(s)"

 If collSOMs.Count>0 Then

 For Each gpmSOM In collSOMs

 Select Case gpmSOM.Type

 Case gpmConstants.SOMSite

 WScript.Echo vbtab & "Site:" & gpmSOM.Name

 Case gpmConstants.SOMDomain

 WScript.Echo vbTab & "Domain:" & gpmSOM.Name

 Case gpmConstants.SOMOU

 WScript.Echo vbTab & "OU:" &gpmSOM.Name

 End Select

 Next

 End if

Next

WScript.Quit

'**

Function GetDomainFQDN()

 set RootDSE=GetObject("LDAP://RootDSE")

 DomainPath= RootDSE.Get("DefaultNamingContext")

 DomainPath=Replace(DomainPath,"DC=","")

 GetDomainFQDN=Replace(DomainPath,",",".")

End Function

406 Part IV: Scripting for the Enterprise

Because this script is very similar to Listing 14-1, let’s focus on what’s new. After we get the
GPO collection, we can enumerate the collection and get an individual GPO object. We’re dis-
playing the GPO display name and its GUID.

For Each gpo In collGPOS

 WScript.Echo gpo.Displayname & " [" & gpo.id & "]"

We will search for SOM links by using the searchSOMS method of the gpmDomain object.
However, this requires search criteria. Although search criteria weren’t required to find GPOs,
we need to specify criteria to find SOM links by using the Add method. When we add search
criteria, the format is Property,Operation,Value. The first two parameters are specified with a
gpmConstant.

For Each gpo In collGPOS

 WScript.Echo gpo.Displayname & " [" & gpo.id & "]"

 gpmSearchCriteria.Add gpmConstants.SearchPropertySOMLinks,_

 gpmConstants.SearchOpContains,gpo

 Set collSOMs=gpmDomain.SearchSOMs(gpmSearchCriteria)

This snippet adds criteria to search for SOM links by using a contains operation. We create a
collection of SOMs with the searchSOMS method of the gpmDomain object. We can now enu-
merate the collection of SOMs.

WScript.Echo "Linked to " & collSOMs.Count & " container(s)"

 If collSOMs.Count>0 Then

 For Each gpmSOM In collSOMs

 Select Case gpmSOM.Type

 Case gpmConstants.SOMSite

 WScript.Echo vbtab & "Site:" & gpmSOM.Name

 Case gpmConstants.SOMDomain

 WScript.Echo vbTab & "Domain:" & gpmSOM.Name

 Case gpmConstants.SOMOU

 WScript.Echo vbTab & "OU:" & gpmSOM.Name

 End Select

 Next

 End if

Each member of the collection is a SOM object, and we can return the SOM name as well
as the type of SOM—OU, Domain, or Site. Here’s another example of where we can use gpm-
Constants. The gpmSOM.Type property returns a numeric constant that is pretty meaningless
unless you know what it means. We can use the SOMSite, SOMDomain, and SOMOU constant
property in a Select Case statement. Here is sample output from Listing 14-2.

Found 5 group policy objects In company.pri(DC02.company.pri)

Test Security [{20029756-EC91-44FB-B57C-87A9A5584880}]

Linked to 1 container(s)

 OU:TestingOU

Default Domain Policy [{31B2F340-016D-11D2-945F-00C04FB984F9}]

Linked to 1 container(s)

 Domain:company.pri

New Group Policy Object [{4962C921-BCFC-4B22-BF39-8746D9CD8536}]

Chapter 14: Group Policy Management Scripting 407

Linked to 0 container(s)

Default Domain Controllers Policy [{6AC1786C-016F-11D2-945F-00C04fB984F9}]

Linked to 1 container(s)

 OU:Domain Controllers

Desktop Restrictions [{B171DED9-C308-45C5-A1B5-48494C0B6DB5}]

Linked to 1 container(s)

 OU:TestingOU

Scripting GPO Permissions
The GPMC object model provides access to GPO permissions through a permissions object.
The gpmGPO object has a GetSecurityInfo method that returns a collection of gpmPermission
objects. These objects have an interface for returning information about the trustee; that is,
the account that holds particular permissions.

The script in Listing 14-3 adds a section to display permissions to the script we’ve been using
to show all GPOs in a domain.

Listing 14-3 List GPO Permissions
Dim GPM,gpmConstants,gpmDomain

dim collGPOS,gpmSearchCriteria,gpo

Dim gpmResult,gpmSecurityInfo,gpmPerm

dim RootDSE,objDomain

set GPM=CreateObject("GPMGMT.GPM")

set gpmConstants=GPM.GetConstants

strFQDN=GetDomainFQDN

set gpmDomain=GPM.GetDomain(strFQDN,"",gpmConstants.UseAnyDC)

set gpmSearchCriteria=GPM.CreateSearchCriteria

set collGPOS=gpmDomain.SearchGPOs(gpmSearchCriteria)

wscript.Echo "Found " & collGPOS.Count & " group policy objects in " &_

gpmDomain.Domain & "(" & gpmDomain.DomainController & ")"

For Each gpo In collGPOS

 WScript.Echo gpo.Displayname

 set gpmSecurityInfo=gpo.GetSecurityInfo

 wscript.Echo gpmSecurityInfo.Count & " permission objects"

 For Each gpmPerm In gpmSecurityInfo

 Select Case gpmPerm.permission

 Case gpmConstants.permGPOApply

 WScript.Echo vbTab & "GPO Applies"

 wscript.Echo vbTab & vbTab & ListTrustees(gpmPerm)

 Case gpmConstants.permGPOCustom

 WScript.Echo vbTab & "GPO Custom"

 wscript.Echo vbTab & vbTab & ListTrustees(gpmPerm)

 Case gpmConstants.permGPOEdit

 WScript.Echo vbTab & "GPO Edit"

 wscript.Echo vbTab & vbTab & ListTrustees(gpmPerm)

 Case gpmConstants.permGPORead

 WScript.Echo vbTab & "GPO Read"

408 Part IV: Scripting for the Enterprise

 wscript.Echo vbTab & vbTab & ListTrustees(gpmPerm)

 Case gpmConstants.permGPOEditSecurityAndDelete

 WScript.Echo vbTab & "GPO Edit Security"

 wscript.Echo vbTab & vbTab & ListTrustees(gpmPerm)

 Case Else

 WScript.Echo vbTab & gpmPerm.Permission

 wscript.Echo vbTab & vbTab & ListTrustees(gpmPerm)

 End select

 next

Next

WScript.Quit

'**

Function GetDomainFQDN()

set RootDSE=GetObject("LDAP://RootDSE")

DomainPath= RootDSE.Get("DefaultNamingContext")

DomainPath=Replace(DomainPath,"DC=","")

GetDomainFQDN=Replace(DomainPath,",",".")

End Function

'**

Function ListTrustees(gpmPerm)

On Error Resume Next

 If gpmPerm.Trustee.TrusteeDSPath="" Then

 ListTrustees= gpmPerm.Trustee.TrusteeName

 Else

 ListTrustees= gpmPerm.Trustee.TrusteeName & " [" &_

 gpmPerm.Trustee.TrusteeDSPath & "]"

 End If

End Function

With each GPO object, we create a gmpSecurityInfo object by invoking the GetSecurityInfo
method.

set gpmSecurityInfo=gpo.GetSecurityInfo

Next, we go through each permission object in gpmSecurityInfo by first figuring out what type
of permission it is by looking at the Permission property.

Select Case gpmPerm.permission

As you can see in the Select Case statement, we again use the gpmConstants object to compare
values that correspond to the different types of permissions. If we didn’t, all we would see
would be a number like 6547, and that would be pretty meaningless.

Case gpmConstants.permGPOApply

 WScript.Echo vbTab & "GPO Applies"

 wscript.Echo vbTab & vbTab & ListTrustees(gpmPerm)

 Case gpmConstants.permGPOCustom

 WScript.Echo vbTab & "GPO Custom"

 wscript.Echo vbTab & vbTab & ListTrustees(gpmPerm)

Chapter 14: Group Policy Management Scripting 409

 Case gpmConstants.permGPOEdit

 WScript.Echo vbTab & "GPO Edit"

 wscript.Echo vbTab & vbTab & ListTrustees(gpmPerm)

 Case gpmConstants.permGPORead

 WScript.Echo vbTab & "GPO Read"

 wscript.Echo vbTab & vbTab & ListTrustees(gpmPerm)

 Case gpmConstants.permGPOEditSecurityAndDelete

 WScript.Echo vbTab & "GPO Edit Security"

 wscript.Echo vbTab & vbTab & ListTrustees(gpmPerm)

 Case Else

 WScript.Echo vbTab & gpmPerm.Permission

 wscript.Echo vbTab & vbTab & ListTrustees(gpmPerm)

 End select

To get trustee information for each permission, we called a function that returns the name of
the trustee and the directory service path, if it exists. When you run the script, you get output
like this.

Found 5 group policy objects in company.pri(DC02.company.pri)

Test Security

5 permission objects

 GPO Edit Security

 Domain Admins [CN=Domain Admins,CN=Users,DC=company,DC=pri]

 GPO Edit Security

 Enterprise Admins [CN=Enterprise Admins,CN=Users,DC=company,DC=pri]

 GPO Edit Security

 SYSTEM

 GPO Applies

 Authenticated Users

 GPO Read

 ENTERPRISE DOMAIN CONTROLLERS

Default Domain Policy

5 permission objects

 GPO Edit Security

 Domain Admins [CN=Domain Admins,CN=Users,DC=company,DC=pri]

 GPO Edit Security

 Enterprise Admins [CN=Enterprise Admins,CN=Users,DC=company,DC=pri]

 GPO Edit Security

 SYSTEM

 GPO Applies

 Authenticated Users

 GPO Read

 ENTERPRISE DOMAIN CONTROLLERS

New Group Policy Object

5 permission objects

 GPO Edit Security

 Domain Admins [CN=Domain Admins,CN=Users,DC=company,DC=pri]

 GPO Edit Security

 Enterprise Admins [CN=Enterprise Admins,CN=Users,DC=company,DC=pri]

 GPO Edit Security

 SYSTEM

 GPO Applies

 Authenticated Users

 GPO Read

 ENTERPRISE DOMAIN CONTROLLERS

410 Part IV: Scripting for the Enterprise

Default Domain Controllers Policy

5 permission objects

 GPO Edit Security

 Domain Admins [CN=Domain Admins,CN=Users,DC=company,DC=pri]

 GPO Edit Security

 Enterprise Admins [CN=Enterprise Admins,CN=Users,DC=company,DC=pri]

 GPO Edit Security

 SYSTEM

 GPO Applies

 Authenticated Users

 GPO Read

 ENTERPRISE DOMAIN CONTROLLERS

Desktop Restrictions

5 permission objects

 GPO Edit Security

 Domain Admins [CN=Domain Admins,CN=Users,DC=company,DC=pri]

 GPO Edit Security

 Enterprise Admins [CN=Enterprise Admins,CN=Users,DC=company,DC=pri]

 GPO Edit Security

 SYSTEM

 GPO Applies

 Authenticated Users

 GPO Read

 ENTERPRISE DOMAIN CONTROLLERS

Setting permissions is relatively easy. You need to use the CreatePermission method to create a
new permission object. The method requires three parameters.

■ The trustee name you give permission to. Typically, this is something like Company
\SalesUsers.

■ The type of permission. Use the gpmConstants object so you can specify permGPOApply,
permGPORead, permGPOEdit, or permGPOEditSecurityAndDelete.

■ A Boolean value indicating whether the permission is inheritable.

You end up with a line of code like this.

Set GPM = CreateObject("GPMgmt.GPM")

set gpmConstants=GPM.GetConstants

Set gpmPermission=GPM.CreatePermission("Company\SalesUsers",_

gpmConstants.GPOApply,True)

Tip You can use this method to apply permissions to a GPO, SOM, or WMI filter. Check the
documentation for details on the types of permissions you can set.

After the permission object has been created, use the Add method in the gpmSecurityInfo
object to set the permission.

set gpmSecurityInfo=gpo.GetSecurityInfo

gpmSecurityInfo.Add gpmPermission

Chapter 14: Group Policy Management Scripting 411

Scripting GPO Reports
A major improvement in GPO management is the addition of GPO configuration reports. You
can configure many items with a GPO, but it was always difficult to see which settings had
actually been configured. The Group Policy Management Console includes a report viewer
and a menu command to save the report to a file. We can also perform those tasks from the
command line very easily.

The GPO object has a method called GenerateReportToFile. The method takes a parameter
indicating whether the report should be in HTML or XML format. Once again, we can use the
gpmConstants object to specify the constant with a much easier-to-use name like gpmCon-
stants.ReportHTML or gpmConstants.ReportXML. The other parameter is simply the filename
and path where the report should be saved. Listing 14-4 takes our GPO enumeration script
and generates an HTML report for each GPO using the GPO display name as part of the file-
name.

Listing 14-4 Generate GPO Report
'GPOMasterSummary.vbs

Dim GPM,gpmConstants,gpmDomain

Dim collGPOS,gpmSearchCriteria,gpo

dim RootDSE,objDomain

set GPM=CreateObject("GPMGMT.GPM")

set gpmConstants=GPM.GetConstants

strFQDN=GetDomainFQDN

set gpmDomain=GPM.GetDomain(strFQDN,"",gpmConstants.UseAnyDC)

set gpmSearchCriteria=GPM.CreateSearchCriteria

set collGPOS=gpmDomain.SearchGPOs(gpmSearchCriteria)

wscript.Echo "Found " & collGPOS.Count & " group policy objects in " &_

gpmDomain.Domain & "(" & gpmDomain.DomainController & ")"

For Each gpo In collGPOS

 WScript.Echo gpo.Displayname & " [" & gpo.path & "]"

 gpo.GenerateReporttoFile gpmConstants.ReportHTML, gpo.Displayname &_

 ".html"

Next

WScript.Quit

'**

Function GetDomainFQDN()

 set RootDSE=GetObject("LDAP://RootDSE")

 DomainPath= RootDSE.Get("DefaultNamingContext")

 DomainPath=Replace(DomainPath,"DC=","")

 GetDomainFQDN=Replace(DomainPath,",",".")

End Function

412 Part IV: Scripting for the Enterprise

Scripting GPO Backups
A common GPO management task is to back up GPOs. This is an obvious best practice before
editing a GPO; it ensures that you have a good version of the policy in case you need to revert
to it. You might also want to run a job that periodically backs up GPOs. This is accomplished
with the Backup method of the gpmGPO object.

The method requires the folder path for the backup. The folder must already exist or the
method will fail. You can also specify a comment to associate with the backup.

Set gpmResult=gpmGPO.Backup("d:\backups\SalesDesktop-bkup","baseline")

When executed, the method creates a gpmResult object that you can use to check on the status
of the backup by calling the OverAllStatus method. If there are no errors during the backup,
the method returns an error code of 0; otherwise, it returns a failure error code.

gpmResult.OverAllStatus

if err.number<>0 then

 wscript.echo "Backup failed"

else

 wscript.echo "Backup successful"

end if

Troubleshooting If your backup command isn’t working, make sure the folder path exists
and that you have permissions. Do not include a trailing slash (\) in the path. If you don’t
include a comment, you must at least include two double quotation marks ("") for the second
parameter.

The other useful feature of the gpmResult object is that its Result method will return informa-
tion about the gpmBackup object that is implicitly created. Thus we can expand on our code
snippet.

gpmResult.OverAllStatus

if err.number<>0 then

 wscript.echo "Backup failed"

else

 wscript.echo "Backup successful"

Set gpmBackup=gpmResult.Result

 WScript.Echo "Backed up " & gpmBackup.GPODisplayName &_

 "to " & gpmBackup.BackupDir & "\" & gpmBackup.ID

end if

Scripting GPO Restores
Restoring a GPO is a little more involved than backing one up. You must use the RestoreGPO
method of the gpmDomain object. Additionally, you can only restore a GPO to the domain
where it was created. The method requires a reference to the gpmBackup object to restore a flag

Chapter 14: Group Policy Management Scripting 413

for domain controller validation. If the value is 0, the method validates the domain controller
to see if it can perform the restore. You could also use the DoNotValidateDC attribute of the
gpmConstant object to skip validation.

Best Practices Microsoft recommends that you always validate, especially if you are using
software policy settings. Group Policy objects with software policy settings should be restored
to a Windows 2003 domain controller for minimal client impact. You can restore to a Windows
2000 domain controller, but users might have to reinstall software.

Of course, before you can restore the backup, you have to find it. You can use the Search-
Backups method for the gpmBackupDir object.

strBackupDir="c:\backups"

Set gpmDomain=GPM.GetDomain(strFQDN,"",gpmConstants.UseAnyDC)

Set gpmSearchCriteria=GPM.CreateSearchCriteria

Set gpmBackupDir=GPM.GetBackupDir(strBackupDir)

Set collBackups=gpmBackupDir.SearchBackups(gpmSearchCriteria)

WScript.Echo collBackups.count & " Backups found in " & strBackupDir

For Each gpmBackup In collBackups

 WScript.Echo "ID:" & gpmBackup.ID

 WScript.Echo " Name:" & gpmBackup.GPODisplayName

 WScript.Echo " Comment:" & gpmBackup.Comment

 WScript.Echo " Backed up:" & gpmBackup.TimeStamp

Next

This will return a collection of gpmBackup objects. The snippet just shown simply lists all the
available backups. After you’ve added your code to identify the backup you want to restore,
you simply add this code snippet.

Set gpmResult=gpmDomain.RestoreGPO(gpmBackup,0)

You can use the gpmResult object to validate the restore in much the same way we did for the
backup method.

Scripting Resultant Set of Policy
The Group Policy Management Console includes an excellent planning and troubleshooting
tool called Resultant Set of Policies (RSOP). This tool can calculate the end result of all the pol-
icies that might have been applied during a user session. You can use RSOP in two modes:
planning and logging. In planning mode, RSOP simulates the result of some combination of
user, computer, group membership, and SOM. In logging mode, RSOP examines the results of
an actual user and computer session. In either mode, you can generate a nice looking HTML
report to see what settings were applied and from what GPOs.

The GPMC object model has a gmpRSOP object that you can create from the GPM object
with GetRSOP. The method requires several parameters. The first is whether RSOP will be in

414 Part IV: Scripting for the Enterprise

planning or logging mode. You can use gmpConstant to specify RSOPModePlanning or RSOP-
ModeLogging. The second parameter is for a WMI namespace, which you can leave blank, and
the last parameter must be 0.

Set GPM=CreateObject("GPMGMT.GPM")

set gpmConstants=GPM.GetConstants

set gpmRSOP=GPM.GetRSOP(gpmConstants.RSOPModePlanning,"",0)

In this snippet, we’re going to do some RSOP planning. We define the user account and com-
puter we want to test, as well as a domain controller. The CreateQueryResults method runs the
RSOP in planning mode. We can then use the GenerateReportToFile method, as we did earlier
in the chapter, to write the results to an HTML file.

gpmRSOP.PlanningComputer="company\XPDesk01"

gpmRSOP.PlanningUser="company\a.user"

gpmRSOP.PlanningDomainController="DC01"

gpmRSOP.CreateQueryResults

gpmRSOP.GenerateReportToFile gpmConstants.ReportHTML,".\rsop.htm"

There are additional planning parameters you could specify, such as PlanningUserSecurity-
Groups and PlanningUserSOM. They are explained in the GPMC Help file. You follow a similar
approach for logging mode.

Viewing GPO Scripting in Action
Let’s take everything we’ve covered in this chapter and roll it up into a single script. The script
in Listing 14-5 generates an HTML document with information about every GPO in the
domain including its permissions, SOM links, and the permissions on each SOM.

Listing 14-5 Generate GPO Master
Dim GPM,gpmConstants,gpmDomain

dim collGPOS,gpmSearchCriteria,collSOMs

Dim gpo

dim RootDSE,objDomain

Dim objFSO,objFile

Dim objDict

strFile="GPOMaster.htm"

WScript.Echo "Building GPO Master Report"

Set objDict=CreateObject("Scripting.Dictionary")

Set objFSO=CreateObject("Scripting.FileSystemObject")

Set objFile=objFSO.CreateTextFile(strFile,True)

'build the beginning of the html report"

objFile.Writeline "<html>"

objFile.Writeline "<head>"

objFile.WriteLine "<style type=text/css>"

objFile.WriteLine "body {font-size:80%; font-family:Tahoma;}"

objFile.WriteLine "table { font-size:100%; width:100%; }"

objFile.WriteLine "</style>"

objFile.WriteLine "</head>"

Chapter 14: Group Policy Management Scripting 415

objFile.WriteLine "<body>"

objFile.WriteLine "<H3>Group Policy Master Report</H3><hr>"

'Create GPMC object

Set GPM=CreateObject("GPMGMT.GPM")

'Create GPMC constant object

Set gpmConstants=GPM.GetConstants

strFQDN=GetDomainFQDN

set gpmDomain=GPM.GetDomain(strFQDN,"",gpmConstants.UsePDC)

set gpmSearchCriteria=GPM.CreateSearchCriteria

set collGPOS=gpmDomain.SearchGPOs(gpmSearchCriteria)

objFile.WriteLine "Found " & collGPOS.Count &_

 " group policy objects in " & gpmDomain.Domain & " (" &_

 gpmDomain.DomainController & ")"

For Each gpo In collGPOS

objFile.WriteLine "<Table border=0 cellpadding=3 cellspacing=3>"

objFile.WriteLine "<tr><td align=Center><a href=" & CHR(34) &_

 gpo.Displayname & ".htm" & Chr(34) & " target=_Blank>" &_

 gpo.Displayname & "</td><td>" & gpo.path & "</td></tr>"

objFile.WriteLine "<tr><td></td><td>Created " & gpo.CreationTime &_

"
 Modified " & gpo.ModificationTime &"</td></tr>"

'Get SOM Links

gpmSearchCriteria.Add gpmConstants.SearchPropertySOMLinks,_

gpmConstants.SearchOpContains,gpo

Set collSOMs=gpmDomain.SearchSOMs(gpmSearchCriteria)

objFile.WriteLine "<tr><td>Linked to " & collSOMs.Count &_

 " container(s)</td></tr>"

If collSOMs.Count>0 Then

For Each gpmSOM In collSOMs

objDict.RemoveAll

 Select Case gpmSOM.Type

 Case gpmConstants.SOMSite

 objFile.WriteLine "<tr><td align=Right>[Site] " & gpmSOM.Name &_

 "</td><td>" & gpmSOM.Path &"</td></tr>"

 Set gpmSecurityInfo=gpmSOM.GetSecurityInfo

 objFile.WriteLine "<tr><td colspan=2>" & gpmSecurityInfo.Count &_

 " SOM permission objects</td></tr>"

 For Each gpmPerm In gpmSecurityInfo

 GetPerms(gpmPerm)

 Next

 k=objDict.Keys

 For i=0 To objDict.Count-1

 Select Case k(i)

 Case gpmConstants.permSOMLink

 objFile.WriteLine "<tr><td align=right>SOM Linking</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 End Select

416 Part IV: Scripting for the Enterprise

 Next

 Case gpmConstants.SOMDomain

 objFile.WriteLine "<tr><td align=Right>[Domain] " & gpmSOM.Name &_

 "</td><td>" & gpmSOM.Path &"</td></tr>"

 Set gpmSecurityInfo=gpmSOM.GetSecurityInfo

 objFile.WriteLine "<tr><td colspan=2>" & gpmSecurityInfo.Count &_

 " SOM permission objects</td></tr>"

 For Each gpmPerm In gpmSecurityInfo

 GetPerms(gpmPerm)

 Next

 k=objDict.Keys

 For i=0 To objDict.Count-1

 Select Case k(i)

 Case gpmConstants.permSOMLink

 objFile.WriteLine "<tr><td align=Right>SOM Linking</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permSOMLogging

 objFile.WriteLine "<tr><td align=Right>RSoP Logging</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permSOMPlanning

 objFile.WriteLine "<tr><td align=Right>RSoPPlanning</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 End Select

 Next

 Case gpmConstants.SOMOU

 objFile.WriteLine "<tr><td align=Right>[OU] " &gpmSOM.Name &_

 "</td><td>" & gpmSOM.Path &"</td></tr>"

 Set gpmSecurityInfo=gpmSOM.GetSecurityInfo

 objFile.WriteLine "<tr><td colspan=2>" & gpmSecurityInfo.Count &_

 " SOM permission objects</td></tr>"

 For Each gpmPerm In gpmSecurityInfo

 GetPerms(gpmPerm)

 Next

 k=objDict.Keys

 For i=0 To objDict.Count-1

 Select Case k(i)

 Case gpmConstants.permSOMLink

 objFile.WriteLine "<tr><td align=right>SOM Linking</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

Chapter 14: Group Policy Management Scripting 417

 Next

 Case gpmConstants.permSOMGPOCreate

 objFile.WriteLine "<tr><td align=right>Create GPO</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permSOMLogging

 objFile.WriteLine "<tr><td align=right>RSoP Logging</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permSOMPlanning

 objFile.WriteLine "<tr><td align=right>RSoPPlanning</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permSOMWMICreate

 objFile.WriteLine "<tr><td align=right>Create WMI Filters</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permSOMWMIFullControl

 objFile.WriteLine "<tr><td align=right>Full WMI Control</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 End Select

 Next

 End Select

Next

End If

'Get GPO permissions

'clear the dictionary

objDict.RemoveAll

Set gpmSecurityInfo=gpo.GetSecurityInfo

objFile.WriteLine "<tr><td colspan=2>" & gpmSecurityInfo.Count &_

 " GPO permission objects</td></tr>"

For Each gpmPerm In gpmSecurityInfo

GetPerms(gpmPerm)

Next

 k=objDict.Keys

 For i=0 To objDict.Count-1

 Select Case k(i)

 Case gpmConstants.permGPOApply

 objFile.WriteLine "<tr><td align=right>GPO Applies</td></tr>"

418 Part IV: Scripting for the Enterprise

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permGPOCustom

 objFile.WriteLine "<tr><td align=right>GPO Custom</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permGPOEdit

 objFile.WriteLine "<tr><td align=right>GPO Edit</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permGPORead

 objFile.WriteLine "<tr><td align=right>GPO Read</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permGPOEditSecurityAndDelete

 objFile.WriteLine "<tr><td align=right>GPO Edit Security</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 End Select

 Next

'Generate HTML Report

 gpo.GenerateReporttoFile gpmConstants.ReportHTML, ".\" &_

 gpo.Displayname & ".htm"

objFile.WriteLine "</Table>

"

Next

objFile.WriteLine "<I>Report run " & Now & "</I>"

objFile.WriteLine "</Body>"

objFile.WriteLine "</html>"

objFile.Close

WScript.Echo "Finished building report page."

WScript.Quit

'**

Function GetDomainFQDN()

Set RootDSE=GetObject("LDAP://RootDSE")

DomainPath= RootDSE.Get("DefaultNamingContext")

DomainPath=Replace(DomainPath,"DC=","")

GetDomainFQDN=Replace(DomainPath,",",".")

End Function

'**

Function ListTrustees(gpmPerm)

Chapter 14: Group Policy Management Scripting 419

On Error Resume Next

 If gpmPerm.Trustee.TrusteeDSPath="" Then

 ListTrustees= gpmPerm.Trustee.TrusteeName

 Else

 ListTrustees= gpmPerm.Trustee.TrusteeName & " [" &_

 gpmPerm.Trustee.TrusteeDSPath & "]"

 End If

End Function

'**

Sub GetPerms(gpmPerm)

If objDict.Exists(gpmPerm.Permission) Then

 strTemp=objDict.Item(gpmPerm.Permission)

 objDict.Remove gpmPerm.Permission

 'WScript.Echo "Adding " & strTemp & "," & ListTrustees(gpmPerm)

 objDict.Add gpmPerm.permission,strTemp & "||" & ListTrustees(gpmPerm)

Else

 objDict.Add gpmPerm.Permission,ListTrustees(gpmPerm)

End If

End Sub

We’ve simply taken some of the script samples from the chapter and written the results to an
HTML table. We start by getting a connection to the domain and searching for all GPOs.

'Create GPMC object

Set GPM=CreateObject("GPMGMT.GPM")

'Create GPMC constant object

Set gpmConstants=GPM.GetConstants

strFQDN=GetDomainFQDN

set gpmDomain=GPM.GetDomain(strFQDN,"",gpmConstants.UsePDC)

set gpmSearchCriteria=GPM.CreateSearchCriteria

set collGPOS=gpmDomain.SearchGPOs(gpmSearchCriteria)

For each GPO, we write the display name, the path, and the creation and modification time to
the table.

objFile.WriteLine "<Table border=0 cellpadding=3 cellspacing=3>"

objFile.WriteLine "<tr><td align=Center><a href=" & CHR(34) &_

 gpo.Displayname & ".htm" & Chr(34) & " target=_Blank>" &_

 gpo.Displayname & "</td><td>" & gpo.path & "</td></tr>"

objFile.WriteLine "<tr><td></td><td>Created " & gpo.CreationTime &_

"
 Modified " & gpo.ModificationTime &"</td></tr>"

Next we get the SOM links for the GPO.

'Get SOM Links

gpmSearchCriteria.Add gpmConstants.SearchPropertySOMLinks,_

gpmConstants.SearchOpContains,gpo

Set collSOMs=gpmDomain.SearchSOMs(gpmSearchCriteria)

objFile.WriteLine "<tr><td>Linked to " & collSOMs.Count &_

 " container(s)</td></tr>"

420 Part IV: Scripting for the Enterprise

We write information about the SOM to the table.

For Each gpmSOM In collSOMs

objDict.RemoveAll

 Select Case gpmSOM.Type

 Case gpmConstants.SOMSite

 objFile.WriteLine "<tr><td align=Right>[Site] " & gpmSOM.Name &_

 "</td><td>" & gpmSOM.Path &"</td></tr>"

For each SOM type, such as OU or Site, we get the permissions for the SOM.

Set gpmSecurityInfo=gpmSOM.GetSecurityInfo

 objFile.WriteLine "<tr><td colspan=2>" & gpmSecurityInfo.Count &_

 " SOM permission objects</td></tr>"

 For Each gpmPerm In gpmSecurityInfo

 GetPerms(gpmPerm)

 Next

We use a dictionary object to group the permission types together through a subroutine called
GetPerms.

Sub GetPerms(gpmPerm)

If objDict.Exists(gpmPerm.Permission) Then

 strTemp=objDict.Item(gpmPerm.Permission)

 objDict.Remove gpmPerm.Permission

 'WScript.Echo "Adding " & strTemp & "," & ListTrustees(gpmPerm)

 objDict.Add gpmPerm.permission,strTemp & "||" & ListTrustees(gpmPerm)

Else

 objDict.Add gpmPerm.Permission,ListTrustees(gpmPerm)

End If

End Sub

The subroutine adds each new trustee, separated by two pipes (||). This is so we can later
split the item into an array and write out each entry separately. We don’t use a comma because
the trustee information includes the Active Directory path, which has commas.

Each dictionary key corresponds to a particular permission type, and the item holds the trust-
ees. We can then enumerate the dictionary and use Select Case to compare the permission
types. Each dictionary item is split into an array so each trustee can be written separately.

k=objDict.Keys

 For i=0 To objDict.Count-1

 Select Case k(i)

 Case gpmConstants.permSOMLink

 objFile.WriteLine "<tr><td align=Right>SOM Linking</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permSOMLogging

 objFile.WriteLine "<tr><td align=Right>RSoP Logging</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

Chapter 14: Group Policy Management Scripting 421

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permSOMPlanning

 objFile.WriteLine "<tr><td align=Right>RSoPPlanning</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 End Select

 Next

This process is repeated for every SOM type, and then we use the same technique to get GPO
permissions.

'Get GPO permissions

'clear the dictionary

objDict.RemoveAll

Set gpmSecurityInfo=gpo.GetSecurityInfo

objFile.WriteLine "<tr><td colspan=2>" & gpmSecurityInfo.Count &_

 " GPO permission objects</td></tr>"

For Each gpmPerm In gpmSecurityInfo

GetPerms(gpmPerm)

Next

 k=objDict.Keys

 For i=0 To objDict.Count-1

 Select Case k(i)

 Case gpmConstants.permGPOApply

 objFile.WriteLine "<tr><td align=right>GPO Applies</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permGPOCustom

 objFile.WriteLine "<tr><td align=right>GPO Custom</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permGPOEdit

 objFile.WriteLine "<tr><td align=right>GPO Edit</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permGPORead

 objFile.WriteLine "<tr><td align=right>GPO Read</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

422 Part IV: Scripting for the Enterprise

 tmpArray(j)&"</td></tr>"

 Next

 Case gpmConstants.permGPOEditSecurityAndDelete

 objFile.WriteLine "<tr><td align=right>GPO Edit Security</td></tr>"

 tmpArray=Split(objDict.Item(k(i)),"||")

 For j=0 To UBound(tmpArray)

 objFile.WriteLine "<tr><td></td><td align=left>" &_

 tmpArray(j)&"</td></tr>"

 Next

 End Select

 Next

The script generates an HTML report for each GPO.

'Generate HTML Report

 gpo.GenerateReporttoFile gpmConstants.ReportHTML, ".\" &_

 gpo.Displayname & ".htm"

When we wrote the GPO display name to the table, we included HTML code to link to the
report.

objFile.WriteLine "<tr><td align=Center><a href=" & CHR(34) &_

 gpo.Displayname & ".htm" & Chr(34) & " target=_Blank>" &_

 gpo.Displayname & "</td><td>" & gpo.path & "</td></tr>"

When you run the script, you should get a result like the one shown in Figure 14-2.

Figure 14-2 GPO master report summary

Chapter 14: Group Policy Management Scripting 423

Summary
Scripting GPO management might not be something you do often. However, you’ll find the
Group Policy Management Console easy to use, especially for tasks such as RSOP planning.
We think you’ll find scripting with the GPMC especially useful for automating tasks such as
backups and report generation. We demonstrated how the object model works, and how to
work with the invaluable Constants object. GPMC scripting takes a little practice, but if you
want something a little different than the scripts that are included with the tool, you’ll be
happy you took the time.

More Info We’ve included a number of helpful Web links about GPMC scripting on the
companion CD. And don’t forget to look at the Group Policy Management Console Help file
(gpmc.chm) in the %ProgramFiles%\GPMC\Scripts folder.

425

Chapter 15

Exchange 2003 Scripting

In this chapter:

Introducing Exchange Scripting . 425

Querying Active Directory . 426

Understanding Exchange 2003 WMI Classes. 432

Scripting the Exchange Server State Class . 435

Scripting Exchange Storage Groups . 436

Scripting Exchange Mailboxes . 441

Viewing Exchange Server Scripting in Action . 454

Summary . 462

Microsoft Exchange 2003 is the ideal platform for administrative scripting. If you have ever
wished you could manage an Exchange environment with VBScript, Exchange 2003 is what
you have been waiting for. In this chapter, we’ll explore the various approaches to scripting
with Exchange 2003. You will see how to manage Exchange servers, storage groups, and mail
stores. As you’ll see, there’s no single scripting approach, and you will have to be well-versed
in Active Directory Services Interface (ADSI), Windows Management Instrumentation (WMI),
and more to get the most from Exchange 2003 scripting.

Exchange 2003 is by far the strongest enterprise mail platform Microsoft has ever introduced.
One of its greatest strengths is that there are many ways to manage it; you no longer need to
rely on the management console. Now you can create scripts for custom management tasks
that you can’t do with the management console or expensive third-party tools.

Introducing Exchange Scripting
Scripting with Exchange 2003 involves a variety of technologies. You use the Lightweight
Directory Access Protocol (LDAP) ADSI provider to discover information about your Ex-
change organization from Active Directory. You use the WinNT ADSI provider to manage
Exchange 2003 services. You use WMI to manage Exchange mailboxes and Exchange servers.
Finally, you use Collaboration Data Objects (CDO) and Collaboration Data Objects for Ex-
change Management (CDOEXM) to manage storage groups and mailbox stores. One benefit
of scripting with Exchange 2003 is that you can manage your Exchange organization remotely
from your desktop. Assuming you have appropriate administrative credentials, you can per-
form most administrative tasks from a Microsoft Windows XP desktop with no additional
software.

426 Part IV: Scripting for the Enterprise

If you need to develop or run any scripts that use CDO or CDOEXM, though, you will need to
install the Exchange 2003 management console on your desktop. If you are administering an
Exchange server, chances are you have it installed already.

We also recommend that you install the Exchange 2003 Software Development Kit (SDK).
The SDK is freely available for download from Microsoft at

http://www.microsoft.com/downloads/details.aspx?FamilyId=E7E34B5B-01B0-45ED-B91F-
F7064875D379&displaylang=en

On the CD This link, like most of the links referenced in this book, is included on the com-
panion CD. Click Exchange 2003 SDK.

The SDK is full of code samples and excellent documentation. Much of the SDK is targeted
toward application developers, but you will find plenty of information about Exchange
objects, properties, and methods.

Querying Active Directory
Starting with Exchange 2000, Microsoft began using Active Directory as the directory service
for Microsoft Exchange. All configuration information about the Exchange organization,
server, storage groups and more is now stored in Active Directory. This means we can use an
ADSI query with the LDAP provider to discover information about our Exchange environ-
ment. For example, we can discover all the Exchange servers in our organization. Consider the
script in Listing 15-1.

Listing 15-1 List Exchange Servers
'Get list of Exchange servers from AD

Dim objRootDSE

Dim objConfiguration

Dim cat

Dim conn

Dim cmd

Dim RS

Set objRootDSE = GetObject("LDAP://rootDSE")

strConfiguration = "LDAP://" & objRootDSE.Get("configurationNamingContext")

Set objConfiguration = GetObject(strConfiguration)

'select Exchange servers but not policies which happen to share the same class

strQuery="Select distinguishedname,name,serialnumber,whencreated from '"& _

objConfiguration.ADSPath & "' Where objectclass='msExchExchangeServer' "&_

"AND objectclass<>'msExchExchangeServerPolicy'"

WScript.Echo strQuery & VbCrLf

Set cat=GetObject("GC:")

Chapter 15: Exchange 2003 Scripting 427

For each obj in cat

 Set GC=obj

Next

Set conn=Createobject("ADODB.Connection")

Set cmd=CreateObject("ADODB.Command")

conn.Provider="ADSDSOObject"

conn.Open

Set cmd.ActiveConnection=conn

Set RS=conn.Execute(strQuery)

Do While not RS.EOF

if isArray(RS.Fields("serialnumber")) Then tmpArray=RS.Fields("serialnumber")

 wscript.Echo rs.Fields("name") & " (Created " &_

 RS.Fields("whencreated") & ")" & vbTab & tmpArray(0)

 RS.movenext

Loop

RS.Close

conn.Close

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

We start by defining a query to search the default configuration naming context of our
Active Directory forest. We will search for objects in which the object class is equal to ms-
ExchExchangeServer but not equal to msExchExchangeServerPolicy, because the msExch-
ExchangeServerPolicy object inherits class settings from msExchExchangeServer. If we queried
for msExchExchangeServer objects, we would also get a list of server policies. The script will
display the query so you can see exactly what you are trying to find.

Set objRootDSE = GetObject("LDAP://rootDSE")

strConfiguration = "LDAP://" & objRootDSE.Get("configurationNamingContext")

Set objConfiguration = GetObject(strConfiguration)

'select Exchange servers but not policies which happen to share the same class

strQuery="Select distinguishedname,name,serialnumber,whencreated from '"& _

objConfiguration.ADSPath & "' Where objectclass='msExchExchangeServer' "&_

"AND objectclass<>'msExchExchangeServerPolicy'"

WScript.Echo strQuery & VbCrLf

By using simple ADODB code, we process the recordset and display the name, whencreated,
and serialnumber properties.

Tip Even though we don’t display it, we query for the distinguished name of the server. You
might want to add this to the script output as a learning aid to better understand how
Exchange information is stored in Active Directory.

428 Part IV: Scripting for the Enterprise

Notice that we process the serialnumber property as an array.

if isArray(RS.Fields("serialnumber")) Then tmpArray=RS.Fields("serialnumber")

That’s because this attribute is a multi-lined value. If we just tried to use the following, we
would get a type mismatch error.

wscript.echo RS.fields("serialnumber")

We knew serialnumber was multi-lined because we used ADSIEdit from Windows Support
Tools to view the properties. Open the Configuration naming context and navigate to CN=Ser-
vices. Expand this item, and you will see CN=Microsoft Exchange. This is where most Exchange
information is stored in Active Directory. As you explore this hierarchy, you’ll eventually find
your administrative group and within that, your server. Right-click the server name, such as
CN=Mail01, and click Properties to display all the property attributes. If you edit serialnumber,
you will see that it is a multi-valued property.

If you continue exploring in ADSIEdit, you will see CN=InformationStore, which is where infor-
mation about all the storage groups for a particular server is stored. The script in Listing 15-2
searches the default naming context in Active Directory for all storage groups.

Listing 15-2 List Exchange Storage Groups
'Get list of Storage Groups

Dim objRootDSE

Dim objConfiguration

Dim conn

Dim cmd

Dim RS

Set objRootDSE = GetObject("LDAP://rootDSE")

strConfiguration = "LDAP://" & objRootDSE.Get("configurationNamingContext")

Set objConfiguration = GetObject(strConfiguration)

strPath=objConfiguration.ADSpath

strQuery="Select distinguishedname,name,whencreated from '" & strPath &_

 "' WHERE objectclass='msExchStorageGroup'"

WScript.Echo strQuery & VbCrLf

set cat=GetObject("GC:")

for each obj in cat

 set GC=obj

Next

set conn=Createobject("ADODB.Connection")

set cmd=CreateObject("ADODB.Command")

conn.Provider="ADSDSOObject"

conn.Open

set cmd.ActiveConnection=conn

set RS=conn.Execute(strQuery)

Chapter 15: Exchange 2003 Scripting 429

do while not RS.EOF

 wscript.echo rs.Fields("distinguishedname")

 WScript.echo vbtab & rs.Fields("name") & "(Created " &_

 rs.fields("whencreated") & ")"

rs.movenext

Loop

rs.Close

conn.Close

The format of this script is essentially the same as that of Listing 15-1. The query is searching
for any object of the msExchStorageGroup class.

strQuery="Select distinguishedname,name,whencreated from '" & strPath &_

 "' WHERE objectclass='msExchStorageGroup'"

When you run this script, you will get output like this.

Select distinguishedname,name,whencreated from 'LDAP://CN=Configuration,DC=company,DC=pri'

WHERE objectclass='msExchStorageGroup'

CN=First Storage Group,CN=InformationStore,CN=MAIL01,CN=Servers,CN=First Administrative

Group,CN=Administrative Groups,CN=company,CN=Microsoft

Exchange,CN=Services,CN=Configuration,DC=company,DC=pri

 First Storage Group(Created 12/1/2004 8:29:59 PM)

CN=Second Storage Group,CN=InformationStore,CN=MAIL01,CN=Servers,CN=First Administrative

Group,CN=Administrative Groups,CN=company,CN=Microsoft

Exchange,CN=Services,CN=Configuration,DC=company,DC=pri

 Second Storage Group(Created 4/27/2005 12:06:55 AM)

CN=ScriptingAnswers,CN=InformationStore,CN=MAIL01,CN=Servers,CN=First Administrative

Group,CN=Administrative Groups,CN=company,CN=Microsoft

Exchange,CN=Services,CN=Configuration,DC=company,DC=pri

 ScriptingAnswers(Created 8/9/2005 5:13:13 PM)

This code will return all storage groups for the entire Exchange organization. If you have
only one Exchange server, all the storage groups will be on the same server. However, if you
have multiple servers and you want to display only information about storage groups on a
specific server, you have to search the storage group’s distinguished name. Because the stor-
age group is a child object of the Exchange server, the Exchange server name appears in the
distinguished name. For example, a storage group on the server MAIL01 might have a dis-
tinguished name like CN=First Storage Group,CN=InformationStore,CN=MAIL01,CN=Servers,
CN=First Administrative Group,CN=Administrative Groups,CN=COMPANY,CN=Microsoft
Exchange,CN=Services,CN=Configuration,DC=company,DC=pri. If we want to see only storage
groups for this server, we might modify the script like this.

strSrv="MAIL01"

do while not RS.EOF

 If InStr(rs.Fields("distinguishedname"),strSrv) then

 wscript.echo rs.Fields("distinguishedname")

 WScript.echo vbtab & rs.Fields("name") & "(Created " &_

 rs.fields("whencreated") & ")"

 end if

 rs.movenext

Loop

430 Part IV: Scripting for the Enterprise

We can also get information about Exchange mailbox stores by querying Active Directory, as
shown in the script in Listing 15-3.

Listing 15-3 List Exchange Mailbox Stores
'Get list of Mailbox Stores

Dim objRootDSE

Dim objConfiguration

Dim conn

Dim cmd

Dim RS

Set objRootDSE = GetObject("LDAP://rootDSE")

strConfiguration = "LDAP://" & objRootDSE.Get("configurationNamingContext")

Set objConfiguration = GetObject(strConfiguration)

strPath=objConfiguration.ADSpath

 strQuery="Select distinguishedname,name,whencreated from '" & strPath &_

 "' WHERE objectclass='msExchPrivateMDB' "

WScript.Echo strQuery & vbcrlf

set cat=GetObject("GC:")

for each obj in cat

 set GC=obj

Next

set conn=Createobject("ADODB.Connection")

set cmd=CreateObject("ADODB.Command")

conn.Provider="ADSDSOObject"

conn.Open

set cmd.ActiveConnection=conn

set RS=conn.Execute(strQuery)

do while not RS.EOF

 WScript.Echo RS.Fields("distinguishedname")

 WScript.Echo vbTab & RS.Fields("name") & "(Created " &_

 RS.fields("whencreated") & ")"

 rs.movenext

Loop

rs.Close

conn.Close

Again, the script hasn’t really changed except for the object class in our query. Now we’re
searching for msExchPrivateMDB objects.

strQuery="Select distinguishedname,name,whencreated from '" & strPath &_

 "' WHERE objectclass='msExchPrivateMDB' "

Active Directory can’t tell us much about the actual mailbox store. For example, it can’t tell us
how large it is, but it can tell us how it is defined, and this information can include the mail-
boxes within each mailbox store. The script in Listing 15-4 is very similar to Listing 15-3
except that it will also display every mailbox within the storage group.

Chapter 15: Exchange 2003 Scripting 431

Listing 15-4 List Mailbox Stores and Mailboxes
'Get list of Mailbox Stores

Dim objRootDSE

Dim objConfiguration

Dim conn

Dim cmd

Dim RS

Set objRootDSE = GetObject("LDAP://rootDSE")

strConfiguration = "LDAP://" & objRootDSE.Get("configurationNamingContext")

Set objConfiguration = GetObject(strConfiguration)

strPath=objConfiguration.ADSpath

strQuery="Select distinguishedname,name,homeMDBBL from '" & strPath &_

"' WHERE objectclass='msExchPrivateMDB' "

WScript.Echo strQuery & vbcrlf

set cat=GetObject("GC:")

for each obj in cat

 set GC=obj

Next

set conn=Createobject("ADODB.Connection")

set cmd=CreateObject("ADODB.Command")

conn.Provider="ADSDSOObject"

conn.Open

set cmd.ActiveConnection=conn

set RS=conn.Execute(strQuery)

do while not RS.EOF

 WScript.Echo RS.Fields("distinguishedname")

 WScript.Echo vbTab & "Mailboxes on " & RS.Fields("name")

 tmpArray=RS.Fields("homeMDBBL")

 For m=0 To UBound(tmpArray)

 WScript.Echo vbTab & " " & tmpArray(m)

 next

 rs.movenext

Loop

rs.Close

conn.Close

This script takes the script in Listing 15-3 and adds the homeMDBBL attribute to the query.

strQuery="Select distinguishedname,name,homeMDBBL from '" & strPath &_

"' WHERE objectclass='msExchPrivateMDB' "

432 Part IV: Scripting for the Enterprise

The homeMDBBL attribute is multi-valued and contains the distinguished name of the
account attached to each mailbox. Because the attribute is multi-valued, we treat it as an array.

do while not RS.EOF

 WScript.Echo RS.Fields("distinguishedname")

 WScript.Echo vbTab & "Mailboxes on " & RS.Fields("name")

 tmpArray=RS.Fields("homeMDBBL")

 For m=0 To UBound(tmpArray)

 WScript.Echo vbTab & " " & tmpArray(m)

 next

 rs.movenext

Loop

Understanding Exchange 2003 WMI Classes
Microsoft Exchange 2000 had a few new WMI classes, but Exchange 2003 introduces several
more. You now have even more opportunities to use WMI classes in your scripts. Table 15-1
lists the new classes.

These classes are located in the root\MicrosoftExchangev2 namespace. You can view them with
a tool like Scriptomatic.

Important If you run Exchange 2003 on Microsoft Windows Server 2000, you likely won’t
see most of these classes. To use the new WMI classes, you need to run Exchange 2003 on
Microsoft Windows Server 2003.

We won’t go into detail about each new class, but let’s take a quick look at the Exchange_Server
class. Listing 15-5 is a script that uses this WMI class.

Table 15-1 Exchange 2003 WMI Classes

Exchange_FolderTree Exchange_QueueSMTPVirtualServer

Exchange_Link Exchange_QueueX400VirtualServer

Exchange_Logon Exchange_ScheduleInterval

Exchange_Mailbox Exchange_Server

Exchange_PublicFolder Exchange_SMTPLink

Exchange_Queue Exchange_SMTPQueue

Exchange_QueueCacheReloadEvent Exchange_X400Link

Exchange_QueuedMessage Exchange_X400Queue

Exchange_QueuedSMTPMessage Exchange_QueuedX400Message

Chapter 15: Exchange 2003 Scripting 433

Listing 15-5 List Exchange Server Information
On Error Resume Next

strSrv="MAIL01"

Set objWMIService = GetObject("winmgmts:\\" & strSrv &_

 "\root\MicrosoftExchangev2")

Set colItems = objWMIService.ExecQuery("Select AdministrativeGroup,DN," &_

"ExchangeVersion,FQDN,Name,RoutingGroup,CreationTime,Name," &_

"IsFrontEndServer,MessageTrackingEnabled,SubjectLoggingEnabled," &_

"LastModificationTime from Exchange_Server where name='" & strSrv &_

 "'",,48)

For Each objItem In colItems

 If objItem.FQDN="" Then

 wscript.echo "Failed to get Exchange server information from WMI." &_

 " Verify the Microsoft Exchange Management service is running on " &_

 strSRV

 Else

 wscript.echo UCase(objItem.FQDN) & " [" &_

 objItem.Exchangeversion & "]"

 wscript.echo "Administrative Group: " &_

 objItem.AdministrativeGroup

 wscript.echo "Last modified: " &_

 ConvertTime(objItem.LastModificationTime)

 wscript.echo "Front End Server: " & objItem.IsFrontEndServer

 wscript.echo "Message Tracking: " & objItem.MessageTrackingEnabled

 wscript.echo "Subject logging: " & objItem.SubjectLoggingEnabled

 End If

Next

Function ConvertTime(strTime)

On Error Resume Next

yr = Left(strTime,4)

mo = mid(strTime,5,2)

dy = mid(strTime,7,2)

tm = Mid(strTime,9,6)

ConvertTime=mo & "/" & dy & "/" & yr

End Function

We start by connecting to the Exchange namespace on the Exchange 2003 server.

strSrv="MAIL01"

Set objWMIService = GetObject("winmgmts:\\" & strSrv &_

 "\root\MicrosoftExchangev2")

434 Part IV: Scripting for the Enterprise

This object class has many properties and we will query for several of them.

Set colItems = objWMIService.ExecQuery("Select AdministrativeGroup,DN," &_

"ExchangeVersion,FQDN,Name,RoutingGroup,CreationTime,Name," &_

"IsFrontEndServer,MessageTrackingEnabled,SubjectLoggingEnabled," &_

"LastModificationTime from Exchange_Server where name='" & strSrv &_

 "'",,48)

Troubleshooting You might find it odd that we have to specify the server name as part of
a conditional clause in the query. It appears there is a minor bug. A query string of Select * from
Exchange_Server will work just fine. But if you query Select FQDN, ExchangeVersion,Name from
Exchange_Server, the query will fail. If you want a selective query, you need to use a qualifier,
as we do here.

The query returns a WMI collection that we then enumerate.

For Each objItem In colItems

 If objItem.FQDN="" Then

 wscript.echo "Failed to get Exchange server information from WMI." &_

 " Verify the Microsoft Exchange Management service is running on " &_

 strSRV

 Else

 wscript.echo UCase(objItem.FQDN) & " [" &_

 objItem.Exchangeversion & "]"

 wscript.echo "Administrative Group: " &_

 objItem.AdministrativeGroup

 wscript.echo "Last modified: " &_

 ConvertTime(objItem.LastModificationTime)

 wscript.echo "Front End Server: " & objItem.IsFrontEndServer

 wscript.echo "Message Tracking: " & objItem.MessageTrackingEnabled

 wscript.echo "Subject logging: " & objItem.SubjectLoggingEnabled

 End If

Next

Here’s another snippet showing what you can do with a WMI Exchange class. This code uses
the Exchange_PublicFolder class to calculate the total size of all public folder messages.

strSrv="MAIL01"

iTotal=0

Set objWMIService = GetObject("winmgmts:\\" & strSrv &_

 "\root\MicrosoftExchangev2")

strPFQuery="Select * from Exchange_PublicFolder"

Set colItems = objWMIService.ExecQuery(strPFQuery,,48)

For Each objItem in colItems

 strFldrNAme=objItem.Name

 iFldrSize=objItem.TotalMessageSize

 iTotal=iTotal + iFldrSize

Next

Wscript.echo FormatNumber(iTotal/1048576,2) & " MB"

Chapter 15: Exchange 2003 Scripting 435

More Info For more information about using WMI with Exchange 2003, take a look at the
excellent tutorials by Alain Lissoir at

www.microsoft.com/technet/scriptcenter/topics/exchange/ex03_wmi1.mspx

www.microsoft.com/technet/scriptcenter/topics/exchange/ex03_wmi2.mspx

www.microsoft.com/technet/scriptcenter/topics/exchange/ex03_wmi3.mspx

(These links are on the companion CD; click Managing Exchange 2003 with WMI, parts 1, 2, and
3, respectively.)

Scripting the Exchange Server State Class
The WMI class, ExchangeServerState, will give you information about the status of an Exchange
server. For example, if you have an Exchange cluster, you can use this class to check the cluster
state. Some key properties you can work with include the following:

■ ClusterState Indicates the condition of your Exchange cluster. This property returns a
value of 0 (unknown), 1 (OK), 2 (warning), or 3 (error). This is a read-only property.

■ DiskState Indicates the condition of disk storage. This property returns a value of 0
(unknown), 1 (OK), 2 (warning), or 3 (error). This is a read-only property.

■ DN Returns the distinguished name of your Exchange server.

■ GroupDN Returns the distinguished name of the routing group to which the Exchange
server belongs.

■ MemoryState Indicates the condition of memory on the Exchange server. This property
returns a value of 0 (unknown), 1 (OK), 2 (warning), or 3 (error). This is a read-only
property.

■ Name Returns the netBIOS name of the Exchange server.

■ QueueState Indicates the condition of Exchange mail queues. This property returns a
value of 0 (unknown), 1 (OK), 2 (warning), or 3 (error). This is a read-only property.

■ ServerState Indicates the overall condition of the Exchange server. This property
returns a value of 0 (unknown), 1 (OK), 2 (warning), or 3 (error). This is a read-only
property.

■ Unreachable Returns a Boolean value that indicates whether the Exchange server can
be contacted. It returns TRUE if the server is unreachable.

■ Version Returns version information for Microsoft Exchange.

The script in Listing 15-6 on the next page demonstrates this class. Unlike some of the other
WMI classes we’ve looked at, this one is in the root\cimv2\applications\exchange namespace.

436 Part IV: Scripting for the Enterprise

Listing 15-6 List Exchange Server Information
On Error Resume Next

Dim strComputer

Dim objWMIService

Dim propValue

Dim objItem

Dim SWBemlocator

Dim UserName

Dim Password

Dim colItems

strComputer = "MAIL01"

UserName = ""

Password = ""

Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = SWBemlocator.ConnectServer(strComputer,_

"\root\cimv2\applications\exchange",UserName,Password)

strQuery="Select * from ExchangeServerState"

Set colItems = objWMIService.ExecQuery(strQuery,,48)

For Each objItem in colItems

 WScript.Echo "ClusterState: " & objItem.ClusterState

 WScript.Echo "ClusterStateString: " & objItem.ClusterStateString

 WScript.Echo "CPUState: " & objItem.CPUState

 WScript.Echo "CPUStateString: " & objItem.CPUStateString

 WScript.Echo "DisksState: " & objItem.DisksState

 WScript.Echo "DisksStateString: " & objItem.DisksStateString

 WScript.Echo "DN: " & objItem.DN

 WScript.Echo "GroupDN: " & objItem.GroupDN

 WScript.Echo "GroupGUID: " & objItem.GroupGUID

 WScript.Echo "GUID: " & objItem.GUID

 WScript.Echo "MemoryState: " & objItem.MemoryState

 WScript.Echo "MemoryStateString: " & objItem.MemoryStateString

 WScript.Echo "Name: " & objItem.Name

 WScript.Echo "QueuesState: " & objItem.QueuesState

 WScript.Echo "QueuesStateString: " & objItem.QueuesStateString

 WScript.Echo "ServerMaintenance: " & objItem.ServerMaintenance

 WScript.Echo "ServerState: " & objItem.ServerState

 WScript.Echo "ServerStateString: " & objItem.ServerStateString

 WScript.Echo "ServicesState: " & objItem.ServicesState

 WScript.Echo "ServicesStateString: " & objItem.ServicesStateString

 WScript.Echo "Unreachable: " & objItem.Unreachable

 WScript.Echo "Version: " & objItem.Version

Next

Scripting Exchange Storage Groups
To work with Exchange storage groups, you must have CDO for Exchange Management
(CDOEXM) installed. After you install the Exchange management console on your desktop,
you have everything you need. CDOEXM includes several objects you will instantiate in your
script. Take a look at the script in Listing 15-7.

Chapter 15: Exchange 2003 Scripting 437

Listing 15-7 List Storage Groups
On Error Resume Next

strTitle="Storage Group Report"

strServer=InputBox("What is the name of the Exchange Server?",_

strTitle,"MAIL01")

If strServer="" Then

 WScript.Quit

else

 'Call report subroutine

 SGReport strServer

End if

WScript.Quit

'//

Sub SGReport(strServer)

Dim iServer

Dim iSGs

Dim iMBS

Set iServer=CreateObject("CDOEXM.ExchangeServer")

Set iSGs=CreateObject("CDOEXM.StorageGroup")

'connect to Exchange server with CDOEXM

iServer.DataSource.Open strServer

'return array of storage groups

arrSGs=iServer.StorageGroups

'enumerate the array

For i=0 To UBound(arrSGs)

 'get the URL for each storage group

 strSGUrl=arrSGs(i)

 'connect to each storage group

 iSGs.DataSource.Open "LDAP://" & iServer.DirectoryServer & "/" &_

 strSGUrl

 strData=strData & iSGs.Name & VBCRLF

 strData=strData & vbTab & "LogPath: " &iSGs.LogFilePath & VBCRLF

 strData=strData & vbTab & "SystemPath:" & iSGs.SystemFilePath & VBCRLF

Next

'display the data

WScript.Echo strData

End sub

This script simply lists the name of each storage group as well as its log and database paths for
a specified Exchange server. The heart of the script is the creation of two CDOEXM objects.
We need one for the Exchange server object, and one for the storage group object.

Set iServer=CreateObject("CDOEXM.ExchangeServer")

Set iSGs=CreateObject("CDOEXM.StorageGroup")

438 Part IV: Scripting for the Enterprise

With these objects, we can now connect to the Exchange server specified by the strServer vari-
able and return an array of all the storage groups.

'connect to Exchange server with CDOEXM

iServer.DataSource.Open strServer

'return array of storage groups

arrSGs=iServer.StorageGroups

Then it is just a matter of enumerating the array. We do this by establishing a connection to
each storage group by using the group’s URL, which is essentially its distinguished name.

'get the URL for each storage group

 strSGUrl=arrSGs(i)

 'connect to each storage group

 iSGs.DataSource.Open "LDAP://" & iServer.DirectoryServer & "/" &_

 strSGUrl

The storage group object has several properties of interest, including the path for the storage
group’s log files and the path for system transaction logs.

strData=strData & iSGs.Name & VBCRLF

 strData=strData & vbTab & "LogPath: " &iSGs.LogFilePath & VbCrLf

 strData=strData & vbTab & "SystemPath:" & iSGs.SystemFilePath & VBCRLF

There is a MailboxStoreDBs property that can be used to get mailbox store information. We’ll
look at this property later in this chapter.

Although it is a relatively simple task to create a new storage group on a single Exchange
server, if you would like to automate the build process or have to provision many Exchange
servers, you might want to script this process. The script in Listing 15-8 can be used to create
a new storage group.

Listing 15-8 Create Storage Group
'CreateNewSG.vbs

strTitle="Create New Storage Group"

strServer=InputBox("What is the name of the Exchange Server?",strTitle,_

"MAIL01")

strNewSG=InputBox("What is the name of the new storage group?",strTitle,_

"ScriptingAnswers")

CreateNewStorageGroup strNewSG,strServer

WScript.Echo "Done!"

WScript.quit

Sub CreateNewStorageGroup(strSGName,strComputerName)

 On Error Resume Next

 Dim iServer

 Dim iStGroup

 Dim strTemp

Chapter 15: Exchange 2003 Scripting 439

Set iServer=CreateObject("CDOEXM.ExchangeServer")

Set iStGroup=CreateObject("CDOEXM.StorageGroup")

 ' Set the name of the StorageGroup

 iStGroup.Name = strSGName

 ' Bind to the Exchange Server

 iServer.DataSource.Open strComputerName

 For Each sg In iServer.StorageGroups

 strTemp = sg

 Exit For

 Next

 'cut out the Storage Group name from URL

 strTemp = Mid(strTemp, InStr(2, strTemp, "CN"))

 ' Build the URL to the StorageGroup

 strSGUrl = "LDAP://" & iServer.DirectoryServer & "/CN=" & strSGName &_

 "," & strTemp

 WScript.Echo "Creating " & strSGUrl

 ' Save the StorageGroup

 iStGroup.DataSource.SaveTo strSGUrl

End Sub

The subroutine creates the storage group. We need to specify a name for the storage group
and the name of the Exchange server where it will be created. Like we did in Listing 15-7, we
create the CDOEXM objects for the Exchange server and storage group.

Set iServer=CreateObject("CDOEXM.ExchangeServer")

Set iStGroup=CreateObject("CDOEXM.StorageGroup")

Given the name of the storage group, we can set the name of the storage group object.

 ' Set the name of the StorageGroup

 iStGroup.Name = strSGName

We bind to the Exchange server by using the DataSource property of the Exchange CDOEXM
object.

' Bind to the Exchange Server

 iServer.DataSource.Open strComputerName

To create the new storage group, we need to know the full URL of the storage group. We could
enter the long string as a parameter, but that would be too much work. Instead, we look at the
URL of any existing storage group on the Exchange server, and save the parts of it that we
need. We loop through all the storage groups, grab the first one, and exit the loop.

 For Each sg In iServer.StorageGroups

 strTemp = sg

 Exit For

 Next

440 Part IV: Scripting for the Enterprise

We use the Mid function to strip out the name of the storage group, which will leave us with
the base URL.

 'cut out the Storage Group name from URL

 strTemp = Mid(strTemp, InStr(2, strTemp, "CN"))

Then we can create the URL of the new storage group.

' Build the URL to the StorageGroup

 strSGUrl = "LDAP://" & iServer.DirectoryServer & "/CN=" & strSGName & "," & strTemp

Armed with the URL, we can use the SaveTo method to create the new storage group.

 WScript.Echo "Creating " & strSGUrl

 ' Save the StorageGroup

 iStGroup.DataSource.SaveTo strSGUrl

The log and database files for the new storage group will use their default settings. You can
use the MoveLogFiles and MoveSystemFiles methods to change the location after the storage
group has been created.

Deleting a storage group is very easy, as demonstrated in Listing 15-9.

Listing 15-9 Delete Storage Group
'Delete Storage Group

strTitle="Delete Storage Group"

strServer=InputBox("What is the name of the Exchange Server?",_

strTitle,"MAIL01")

strSG=InputBox("What is the name of the storage group to delete?",_

strTitle,"ScriptingAnswers")

DeleteSG strServer,strSG

Sub DeleteSG(strServer,strSGName)

Dim iServer, iSTGroup

Dim arrSGs

strSGUrl=""

Set iServer=CreateObject("CDOEXM.ExchangeServer")

Set iSTGroup=CreateObject("CDOEXM.storagegroup")

iServer.DataSource.Open strServer

arrSGs=iServer.StorageGroups

For i=0 To UBound(arrSGs)

If InStr(1, UCase(arrSGs(i)), UCase(strSGName)) <> 0 Then

 strSGUrl = arrSGs(i)

 End If

Next

Chapter 15: Exchange 2003 Scripting 441

If strSGUrl <> "" Then

 ' Bind to the StorageGroup

 iSTGroup.DataSource.Open "LDAP://" & iServer.DirectoryServer & "/" &_

 strSGUrl

 rc=MsgBox("Are you sure you want to delete" & VbCrLf &_

 strSGurl & "?",vbYesNo,strTitle)

 If rc=vbYes Then

 ' Delete the StorageGroup

 iSTGroup.DataSource.Delete

 End If

End If

End sub

Structurally, this script is very similar to Listing 15-8. After we connect to the Exchange server
and storage groups, we simply look at each storage group’s name until we find the one we
want to delete.

arrSGs=iServer.StorageGroups

For i=0 To UBound(arrSGs)

 If InStr(1, UCase(arrSGs(i)), UCase(strSGName)) <> 0 Then

 strSGUrl = arrSGs(i)

 End If

Next

After we have the storage group’s URL, we can bind to it.

If strSGUrl <> "" Then

 ' Bind to the StorageGroup

 iSTGroup.DataSource.Open "LDAP://" & iServer.DirectoryServer & "/" & strSGUrl

It’s always a good idea to verify with the user when deleting something as major as a storage
group. But assuming the user confirms the deletion, we simply call the Delete method and the
storage group is gone.

rc=MsgBox("Are you sure you want to delete" & VbCrLf &_

 strSGurl & "?",vbYesNo,strTitle)

 If rc=vbYes Then

 ' Delete the StorageGroup

 iSTGroup.DataSource.Delete

Scripting Exchange Mailboxes
Working with mailbox stores and individual mailboxes requires several technologies. We will
use CDOEXM to manage mailbox stores in much the same way we manage storage groups.
We will use WMI to manage individual mailboxes within each storage group. We will also use
ADSI to manage the connection between mailbox and security account. Let’s start with the
script in Listing 15-10 on the next page, which will list all the mailbox stores for a given
Exchange server.

442 Part IV: Scripting for the Enterprise

Listing 15-10 List Mailbox Stores
strTitle="Mailbox Storage DB Report"

strServer=InputBox("What is the name of the Exchange Server?",_

strTitle,"MAIL01")

MBReport strServer

WScript.Quit

Sub MBReport(strServer)

Dim iServer

Dim iSGs

Dim iMBs

Set iServer=CreateObject("CDOEXM.ExchangeServer")

Set iSGs=CreateObject("CDOEXM.StorageGroup")

Set iMBs=CreateObject("CDOEXM.MailboxStoreDB")

iServer.DataSource.Open strServer

arrSGs=iServer.StorageGroups

For i=0 To UBound(arrSGs)

 strSGUrl=arrSGs(i)

 'WScript.Echo strSGUrl

 iSGs.DataSource.Open "LDAP://" & iServer.DirectoryServer &_

 "/" & strSGUrl

 strData=strData & iSGs.Name & vbcrlf

 arrMBStores=iSGs.MailboxStoreDBs

 For j=0 To UBound(arrMBStores)

 iMBS.DataSource.open "LDAP://" & arrMBStores(j)

 strData=strData & vbTab & iMBs.Name& VbCrLf

 strData=strData & vbTab & iMBs.Status & VbCrLf

 strData=strData & vbTab & " DBPath:" & iMBs.DBPath& VbCrLf

 strData=strData & vbTab & " Streaming DB Path:" &_

 iMBs.SLVPath & vbcrlf

 strData=strData & vbTab & " Last Backup:" &_

 iMBs.LastFullBackupTime & vbcrlf

 strData=strData & vbTab & " StorageQuotaWarning:" &_

 iMBs.StoreQuota & vbcrlf

 strData=strData & vbTab & " StorageQuotaLimit:" &_

 iMBs.OverQuotaLimit & VbCrLf Next

Next

WScript.Echo strData

End sub

The format of this script should look pretty familiar now, so we won’t spend much time re-
analyzing it. Each storage group object has a MailboxStoreDBs property that returns a collec-
tion of mailbox stores for a given storage group.

 arrMBStores=iSGs.MailboxStoreDBs

Chapter 15: Exchange 2003 Scripting 443

Like storage groups, each mailbox store is defined with a URL. We can use this URL to estab-
lish a connection to each mailbox store.

For j=0 To UBound(arrMBStores)

 iMBs.DataSource.open "LDAP://" & arrMBStores(j)

After we are connected, we can display property information about each mailbox store.

 iMBS.DataSource.open "LDAP://" & arrMBStores(j)

 strData=strData & vbTab & iMBs.Name& VbCrLf

 strData=strData & vbTab & iMBs.Status & VbCrLf

 strData=strData & vbTab & " DBPath:" & iMBs.DBPath& VbCrLf

 strData=strData & vbTab & " Streaming DB Path:" &_

 iMBs.SLVPath & vbcrlf

 strData=strData & vbTab & " Last Backup:" &_

 iMBs.LastFullBackupTime & vbcrlf

 strData=strData & vbTab & " StorageQuotaWarning:" &_

 iMBs.StoreQuota & vbcrlf

 strData=strData & vbTab & " StorageQuotaLimit:" &_

 iMBs.OverQuotaLimit & VbCrLf

If you want to mount or dismount the store, you use the Mount or Dismount methods, respec-
tively.

iMBs.Dismount

You have to use the Mount method if you create a new mailbox store, as we do in Listing 15-11.

Listing 15-11 Create Mailbox Store
strTitle="Create New MailBox Store"

strServer=InputBox("What is the name of the Exchange Server?",_

strTitle,"MAIL01")

strSG=InputBox("What is the name of the storage group to create the" &_

" new mailstore under?",strTitle,"First Storage Group")

strMDBName=InputBox("What is the name of the new mail store?",_

strTitle,"ScriptingAnswers Mail")

CreateNewMailStoreDB strMDBName,strServer,strSG

WScript.Quit

Sub CreateNewMailStoreDB(strMDBName,strServer,strSG)

Dim iServer

Dim iMDB

Set iServer=CreateObject("CDOEXM.ExchangeServer")

Set iMDB=CreateObject("CDOEXM.MailboxStoreDB")

' Set the name of the MailboxStoreDB

iMDB.Name = strMDBName

444 Part IV: Scripting for the Enterprise

' Bind to the Exchange Server

iServer.DataSource.Open strServer

' Start to build the URL to the MailboxStoreDB - first part

strTemp = "LDAP://" & iServer.DirectoryServer & "/" & "cn=" & strMDBName &_

 ","

arrStGroup = iServer.StorageGroups

' Look in the StorageGroups array if the StorageGroup with strSG exists

If strSG = "" Then

 ' Finish to build the URL to the MailboxStoreDB - add last part

 strMDBUrl = strTemp & iServer.StorageGroups(0)

Else

 For i = 0 To UBound(arrStGroup)

 If InStr(1, UCase(arrStGroup(i)), UCase(strSG)) <> 0 Then

 strMDBUrl = arrStGroup(i)

 End If

 Next

 If strMDBUrl <> "" Then

 ' Finish to build the URL to the MailboxStoreDB - add last part

 strMDBUrl = strTemp & strMDBUrl

 End If

End If

' Save the New MailboxStoreDB

iMDB.DataSource.SaveTo strMDBUrl

' Mount the MailboxStoreDB

 iMDB.Mount

WScript.Echo "Finished creating " & strMDBName

End Sub

To create a mailbox store, we need to know the names of the Exchange server, the storage
group, and the new mailbox store.

strServer=InputBox("What is the name of the Exchange Server?",_

strTitle,"MAIL01")

strSG=InputBox("What is the name of the storage group to create the" &_

" new mailstore under?",strTitle,"First Storage Group")

strMDBName=InputBox("What is the name of the new mail store?",_

strTitle,"ScriptingAnswers Mail")

Creating the mailbox store requires CDOEXM objects for the Exchange server and mailbox
store, but interestingly enough, not for the storage group.

Set iServer=CreateObject("CDOEXM.ExchangeServer")

Set iMDB=CreateObject("CDOEXM.MailboxStoreDB")

Chapter 15: Exchange 2003 Scripting 445

Just as we did when we created a storage group, we can set the flat name of the mailbox store
and create the mailbox store URL. We will need the URL when we commit the change to the
Exchange server.

' Set the name of the MailboxStoreDB

iMDB.Name = strMDBName

' Bind to the Exchange Server

iServer.DataSource.Open strServer

' Start to build the URL to the MailboxStoreDB - first part

strTemp = "LDAP://" & iServer.DirectoryServer & "/" & "cn=" &_

 strMDBName & ","

Because the mailbox store is contained within the storage group, we need to get the stor-
age group’s URL because that will be part of the final mailbox store’s URL, which is the
strMDBUrl variable.

arrStGroup = iServer.StorageGroups

' Look in the StorageGroups array if the StorageGroup with strSG exists

If strSG = "" Then

 ' Finish to build the URL to the MailboxStoreDB - add last part

 strMDBUrl = strTemp & iServer.StorageGroups(0)

Else

 For i = 0 To UBound(arrStGroup)

 If InStr(1, UCase(arrStGroup(i)), UCase(strSG)) <> 0 Then

 strMDBUrl = arrStGroup(i)

 End If

 Next

If strMDBUrl <> "" Then

 ' Finish to build the URL to the MailboxStoreDB - add last part

 strMDBUrl = strTemp & strMDBUrl

 End If

End If

After we have the mailbox store’s URL, we can commit the change to the Exchange server and
the mailbox store will be created.

' Save the New MailboxStoreDB

iMDB.DataSource.SaveTo strMDBUrl

After we mount the store, it will be ready to be used.

' Mount the MailboxStoreDB

 iMDB.Mount

As the script in Listing 15-12 on the next page shows, to delete a mailbox store, we first need
its URL. After we have that, we can connect to the mailbox store and call the Delete method.

446 Part IV: Scripting for the Enterprise

Listing 15-12 Delete Mailbox Store
strTitle="Delete MailBox Store"

strServer=InputBox("What is the name of the Exchange Server?",_

strTitle,"MAIL01")

strSG=InputBox("What Storage Group is the mail db in?",strTitle,_

"First Storage Group")

strMDBName=InputBox("What is the name of the mail store to deletee?",_

strTitle,"ScriptingAnswers Mail")

DeleteMDBStore strServer,strSG,strMDBName

WScript.Quit

Sub DeleteMDBStore(strServer,strSG,strMDBName)

Dim iServer,iMDB

Set iServer=CreateObject("CDOEXM.ExchangeServer")

Set iMDB=CreateObject("CDOEXM.MailboxStoreDB")

iServer.DataSource.Open strServer

strTemp = "LDAP://" & iServer.DirectoryServer & "/" & "cn=" & strMDBName &_

 ","

arrStGroup = iServer.StorageGroups

' Look in the StorageGroups array if the StorageGroup with strSGName exists

If strSG = "" Then

 ' Add last part to the URL to the MailboxStoreDB

 strMDBUrl = strTemp & iServer.StorageGroups(0)

Else

 For i = 0 To UBound(arrStGroup)

 If InStr(1, UCase(arrStGroup(i)), UCase(strSG)) <> 0 Then

 strMDBUrl = arrStGroup(i)

 End If

 Next

 If strMDBUrl <> "" Then

 ' Add last part to the URL to the MailboxStoreDB

 strMDBUrl = strTemp & strMDBUrl

 End If

End If

' Bind to the MailboxStoreDB

iMDB.DataSource.Open strMDBUrl

' Delete the MailboxStoreDB

iMDB.DataSource.Delete

WScript.Echo "Deleted " & strMDBName

End Sub

Chapter 15: Exchange 2003 Scripting 447

To create an individual mailbox within a specific mailbox store, we need to use ADSI. Each
mailbox is connected to a user or group SID in Active Directory, so we use ADSI to modify the
user object in Active Directory. To create the mailbox, you need to know the distinguished
name of the mailbox store. This will be something like this.

"CN=Mailbox Store (MAIL01),CN=First Storage Group,CN=InformationStore," &_

"CN=MAIL01,CN=Servers,CN=First Administrative Group,CN=Administrative " &_

 "Groups,CN=MATRIX,CN=Microsoft Exchange,CN=Services, CN=Configuration," &_

 "DC=COMPANY,DC=PRI"

You could hard-code this into a script if you had a single mailbox store. But for something
more dynamic, you might want to search Active Directory for a list of mailbox stores, present
the list to the administrator, and let him or her choose. The script in Listing 15-13 demon-
strates this.

Listing 15-13 Create a Mailbox
Dim objUser

On Error Resume Next

strUserDN="CN=Jeff Hicks,OU=Employees,DC=Company,DC=Pri"

Set objUser=GetObject("LDAP://" & strUserDN)

If objUser.HomeMDB="" Then

 strMailDN=SelectMailStore()

 WScript.Echo "Creating mailbox For " & objUser.cn & " on " &_

 strMailDN

 objUser.CreateMailbox strMailDN

 objUser.SetInfo

 If Err.Number <>0 Then

 strMsg="Error creating mailbox for " & objUser & " on " &_

 strMailDN & vbcrlf & Err.Number & " " & Err.Description

 WScript.Echo strMsg

 Else

 WScript.Echo "Successfully created mailbox for " & strUserDN

 End If

Else

 WScript.Echo objuser.cn & " already has a mailbox"

End If

WScript.Quit

'//

Function SelectMailStore()

On Error Resume Next

Dim objRootDSE

Dim objConfiguration

Dim cat

Dim conn

Dim cmd

Dim RS

Dim objDict

Set objDict=CreateObject("scripting.dictionary")

Set objRootDSE = GetObject("LDAP://rootDSE")

x=1

448 Part IV: Scripting for the Enterprise

strConfiguration = "LDAP://" & objRootDSE.Get("configurationNamingContext")

Set objConfiguration = GetObject(strConfiguration)

strQuery="Select name,cn,distinguishedname from '" & _

objConfiguration.ADSPath & "' Where objectclass='msExchPrivateMDB'"

set cat=GetObject("GC:")

for each obj In cat

 set GC=obj

Next

AdsPath=GC.ADSPath

set conn=CreateObject("ADODB.Connection")

set cmd=CreateObject("ADODB.Command")

conn.Provider="ADSDSOObject"

conn.Open

set cmd.ActiveConnection=conn

set RS=conn.Execute(strQuery)

do while not RS.EOF

 DN=rs.Fields("distinguishedname")

 CN=RS.Fields("cn")

 NM=RS.Fields("name")

 objDict.Add x,DN

 strResults=strResults &"(" & x & ") " &DN & VbCrLf

 x=x+1

 rs.movenext

Loop

rs.Close

conn.Close

t=1

a=objDict.Items

 For i=0 To objDict.Count-1

 c=c & "(" & i+1 & ")" & a(i) & VbCrLf

 'display available mailbox stores in groups of 4

 If t<>4 AND i<>objDict.count-1 Then

 t=t+1

 Else

 MsgBox c,vbOKOnly,"Available Mailbox Stores"

 t=1

 c=""

 End If

 Next

iDN=Inputbox("Enter in the number of the mail store you want to use.",_

"Select Mail Store","0")

 If iDN = "" Then

 WScript.Echo "Nothing entered or you cancelled."

 WScript.Quit

 End If

If objDict.Exists(Int(iDN)) Then

 SelectMailStore=objDict.Item(Int(iDN))

Chapter 15: Exchange 2003 Scripting 449

Else

 rc=msgBox ("You selected an invalid number. Try again.",_

 vbOKCancel+vbExclamation,"Select Mail Store")

 if rc=vbCancel Then

 wscript.Quit

 Else

 Main()

 End If

End If

End Function

The script needs the distinguished name of a user object. In this script, we hard-coded a name
for simplicity. We then connect to the user object in Active Directory and check if a mailbox
already exists by examining the HomeMBD property.

strUserDN="CN=Jeff Hicks,OU=Employees,DC=Company,DC=Pri"

Set objUser=GetObject("LDAP://" & strUserDN)

If objUser.HomeMDB="" Then

If the property is empty, we call the function to list available mailbox stores.

 strMailDN=SelectMailStore()

The function searches the global catalog for all object classes that are of the type msExch-
PrivateMDB in the configuration naming context.

Set objDict=CreateObject("scripting.dictionary")

Set objRootDSE = GetObject("LDAP://rootDSE")

x=1

strConfiguration = "LDAP://" & objRootDSE.Get("configurationNamingContext")

Set objConfiguration = GetObject(strConfiguration)

strQuery="Select name,cn,distinguishedname from '" & _

objConfiguration.ADSPath & "' Where objectclass='msExchPrivateMDB'"

The function puts the results into a dictionary object.

set cmd.ActiveConnection=conn

set RS=conn.Execute(strQuery)

Do while not RS.EOF

 DN=rs.Fields("distinguishedname")

 CN=RS.Fields("cn")

 NM=RS.Fields("name")

 objDict.Add x,DN

 strResults=strResults &"(" & x & ") " &DN & VbCrLf

 x=x+1

 'WScript.Echo vbcrlf

 rs.movenext

Loop

450 Part IV: Scripting for the Enterprise

The dictionary object items are the distinguished names of all the mailbox stores. We enumer-
ate the dictionary and present a numbered list to the administrator.

a=objDict.Items

 For i=0 To objDict.Count-1

 c=c & "(" & i+1 & ")" & a(i) & VbCrLf

 'display available mailbox stores in groups of 4

 If t<>4 AND i<>objDict.count-1 Then

 t=t+1

 Else

 MsgBox c,vbOKOnly,"Available Mailbox Stores"

 t=1

 c=""

 End If

 Next

This is followed by an InputBox function, where the administrator can enter the number of the
mailbox store he or she wants to use. The function returns the distinguished name of the mail-
box store. After we have this piece of information, creating the mailbox is very simple.

 objUser.CreateMailbox strMailDN

 objUser.SetInfo

Note You can run the script in Listing 15-13 from your desktop provided you have the
administrator tools (adminpak.msi) installed in addition to the Exchange management con-
sole. You can create mailboxes on a domain controller, but it must also have the Exchange
management console installed. Without it, you won’t get the Exchange management tabs
for the user object in Active Directory.

If you want to move a user’s mailbox, you need to know the name of the mailbox store where
it will be relocated. Consider the script in Listing 15-14. It is very similar to Listing 15-13
except that we use the MoveMailbox method.

Listing 15-14 Move Mailbox
On Error Resume Next

Dim objUser

strTitle="Move Mailbox Demo"

strDefault="LDAP://CN=Jeff Hicks,CN=Users,DC=Company,DC=Pri"

strUserDN=InputBox("Enter the full distinguished name of the user:",_

strTitle,strDefault)

Set objUser=GetObject(strUserDN)

if objUser.HomeMDB="" Then

 MsgBox "User has no mailbox defined"

 WScript.Quit

Else

 MsgBox "The user's current mailbox is on " & vbcrlf & objUser.HomeMDB

End If

Chapter 15: Exchange 2003 Scripting 451

'Call a function to list available mailbox stores

strNewMailDN=SelectMailStore

MsgBox "Moving the mailbox may take a few minutes depending on size"

objUser.MoveMailBox "LDAP://" & strNewMailDN

objUser.SetInfo

WScript.Echo "Finished."

WScript.quit

Function SelectMailStore()

On Error Resume Next

Dim objRootDSE

Dim objConfiguration

Dim cat

Dim conn

Dim cmd

Dim RS

Dim objDict

Set objDict=CreateObject("scripting.dictionary")

Set objRootDSE = GetObject("LDAP://rootDSE")

x=1

strConfiguration = "LDAP://" & objRootDSE.Get("configurationNamingContext")

Set objConfiguration = GetObject(strConfiguration)

strQuery="Select name,cn,distinguishedname from '" & _

objConfiguration.ADSPath & "' Where objectclass='msExchPrivateMDB'"

set cat=GetObject("GC:")

for each obj in cat

 set GC=obj

Next

AdsPath=GC.ADSPath

set conn=CreateObject("ADODB.Connection")

set cmd=CreateObject("ADODB.Command")

conn.Provider="ADSDSOObject"

conn.Open

set cmd.ActiveConnection=conn

set RS=conn.Execute(strQuery)

do while not RS.EOF

 DN=rs.Fields("distinguishedname")

 CN=RS.Fields("cn")

 NM=RS.Fields("name")

 objDict.Add x,DN

 strResults=strResults &"(" & x & ") " &DN & vbcrlf

 x=x+1

 rs.movenext

Loop

452 Part IV: Scripting for the Enterprise

rs.Close

conn.Close

t=1

a=objDict.Items

 For i=0 To objDict.Count-1

 c=c & "(" & i+1 & ")" & a(i) & vbcrlf

 'display available mailbox stores in groups of 4

 If t<>4 And i<>objDict.count-1 Then

 t=t+1

 Else

 MsgBox c,vbOKOnly,"Available Mailbox Stores"

 t=1

 c=""

 End If

 Next

iDN=Inputbox("Enter in the number of the mail store you want to" &_

" use.","Select Mail Store","0")

 If iDN = "" Then

 WScript.Echo "Nothing entered or you cancelled."

 WScript.Quit

 End If

If objDict.Exists(Int(iDN)) Then

 SelectMailStore=objDict.Item(Int(iDN))

Else

 rc=msgBox ("You selected an invalid number. Try again.",_

vbOKCancel+vbExclamation,"Select Mail Store")

 if rc=vbCancel Then

 wscript.Quit

 Else

 Main()

 End If

End If

End Function

To delete a mailbox, which actually just severs the association between the mailbox and the
user’s SID, we simply need to establish a connection to the user object in Active Directory and
invoke the DeleteMailbox method.

strUserDN="CN= Jeff Hicks,OU=Authors,DC=company,DC=pri"

set objUser=GetObject("LDAP://" & strUserDN)

objUser.DeleteMailbox

To gather information about a specific mailbox, we return to WMI and the Exchange_Mailbox
class. Listing 15-15 enumerates properties for a given user’s mailbox.

Chapter 15: Exchange 2003 Scripting 453

Listing 15-15 Get Mailbox Information
On Error Resume Next

Dim strComputer

Dim objWMIService

Dim propValue

Dim SWBemlocator

Dim UserName

Dim Password

Dim colItems

strComputer = "MAIL01"

'specify alternate credentials if necessary

UserName = ""

Password = ""

strTitle="Mailbox Query"

strMailBox=InputBox("Enter the display name of the mailbox",_

strTitle,"Administrator")

Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = SWBemlocator.ConnectServer(strComputer,_

"\root\microsoftexchangev2",UserName,Password)

Set colItems = objWMIService.ExecQuery("Select * from Exchange_Mailbox " &_

"WHERE MailboxDisplayName='" & strMailbox & "'",,48)

For Each objItem in colItems

 If UCase(objItem.MailboxDisplayName)=UCase(strMailBox) Then

 WScript.Echo "AssocContentCount: " & objItem.AssocContentCount

 WScript.Echo "Caption: " & objItem.Caption

 WScript.Echo "DateDiscoveredAbsentInDS: " &_

 objItem.DateDiscoveredAbsentInDS

 WScript.Echo "DeletedMessageSizeExtended: " &_

 objItem.DeletedMessageSizeExtended

 WScript.Echo "Description: " & objItem.Description

 WScript.Echo "InstallDate: " & objItem.InstallDate

 WScript.Echo "LastLoggedOnUserAccount: " &_

 objItem.LastLoggedOnUserAccount

 WScript.Echo "LastLogoffTime: " & objItem.LastLogoffTime

 WScript.Echo "LastLogonTime: " & objItem.LastLogonTime

 WScript.Echo "LegacyDN: " & objItem.LegacyDN

 WScript.Echo "MailboxDisplayName: " & objItem.MailboxDisplayName

 WScript.Echo "MailboxGUID: " & objItem.MailboxGUID

 WScript.Echo "Name: " & objItem.Name

 WScript.Echo "ServerName: " & objItem.ServerName

 WScript.Echo "Size: " & objItem.Size

 WScript.Echo "Status: " & objItem.Status

 WScript.Echo "StorageGroupName: " & objItem.StorageGroupName

 WScript.Echo "StorageLimitInfo: " & objItem.StorageLimitInfo

 WScript.Echo "StoreName: " & objItem.StoreName

 WScript.Echo "TotalItems: " & objItem.TotalItems

 Else

 WScript.Echo "Could not find mailbox for " & strMailbox

 End if

Next

454 Part IV: Scripting for the Enterprise

The script uses a query to return all properties for an Exchange mailbox object where the dis-
play name matches the name provided in the input box.

Set colItems = objWMIService.ExecQuery("Select * from Exchange_Mailbox " &_

"WHERE MailboxDisplayName='" & strMailbox & "'",,48)

If you want information on more than one user, simply query for all of them. Look at the
script in Listing 15-16.

Listing 15-16 Create Mailbox Report
Dim SWBemlocator

Dim objWMIService

Dim colItems

Dim objFSO

Dim objFile

strTitle="Mailbox Report"

strComputer ="MAIL01"

UserName = ""

Password = ""

strLog="MailboxReport.csv"

Set objFSO=CreateObject("Scripting.FileSystemObject")

Set objFile=objFSO.CreateTextFile(strLog,True)

strQuery="Select * from Exchange_Mailbox"

objFile.WriteLine "Server,StorageGroup,MailStore,User,Size(KB),TotalItems"

WScript.Echo "Examining " & strComputer

Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = SWBemlocator.ConnectServer(strComputer,_

"\root\MicrosoftExchangeV2",UserName,Password)

Set colItems = objWMIService.ExecQuery(strQuery,,48)

For Each objItem in colItems

 objFile.writeline objItem.ServerName & "," &objItem.StorageGroupName &_

 "," & objItem.StoreName & "," & Chr(34) & objItem.MailboxDisplayName &_

 Chr(34) & "," & objItem.Size & "," & objItem.TotalItems

Next

objFile.close

WScript.Echo "See " & strLog & " for results."

This script creates a report for all Exchange mailboxes on a given Exchange server. The results
are written to a comma-separated value (CSV) file, so you can easily review the file in
Microsoft Excel.

Viewing Exchange Server Scripting in Action
Before we wrap up this chapter, let’s take a look at one more scripting example that pulls a lot
of the material together in a single script. The script in Listing 15-17 will produce a master
report for all Exchange servers in our organization with version information, service informa-
tion, queue status, storage groups, mailbox stores, mailboxes, and public folders.

Chapter 15: Exchange 2003 Scripting 455

Listing 15-17 Create Master Exchange Report
'MasterExchange.vbs

'usage: cscript MasterExchange.vbs

'You must have Exchange Management tools installed in order

'to run this script.

arrServers=GetExchangeServers

For s = 0 To UBound(arrServers)-1

 WScript.Echo "*****Server Information*****"

 ExchangeServerInfo arrServers(s)

 WScript.Echo "*****Server Status*****"

 ExchangeServerState arrServers(s),"",""

 WScript.Echo "*****Service Status*****"

 GetServiceStatus arrServers(s)

 WScript.Echo "*****Queue Status*****"

 GetQueueInfo arrServers(s)

 WScript.Echo "*****Storage Groups*****"

 GetStorageGroups arrServers(s)

 WScript.Echo "*****Public Folders*****"

 GetPublicFolderInfo arrServers(s),"",""

Next

WScript.quit

'///

Function GetExchangeServers()

' Find all servers in AD

'Returns an array of Exchange server names

WScript.Echo "Querying Active Directory for Exchange servers"

Dim objRootDSE

Dim objConfiguration

Dim cat

Dim conn

Dim cmd

Dim RS

Set objRootDSE = GetObject("LDAP://rootDSE")

strConfiguration = "LDAP://" & objRootDSE.Get("configurationNamingContext")

Set objConfiguration = GetObject(strConfiguration)

'select Exchange servers but not policies which share the same class

strQuery="Select distinguishedname,name from '" & _

objConfiguration.ADSPath & "' Where objectclass='msExchExchangeServer' " &_

"AND objectclass<>'msExchExchangeServerPolicy'"

strResults=""

Set cat=GetObject("GC:")

For each obj In cat

 Set GC=obj

Next

AdsPath=GC.ADSPath

Set conn=CreateObject("ADODB.Connection")

Set cmd=CreateObject("ADODB.Command")

456 Part IV: Scripting for the Enterprise

conn.Provider="ADSDSOObject"

conn.Open

Set cmd.ActiveConnection=conn

Set RS=conn.Execute(strQuery)

Do while not RS.EOF

 strResults=strResults & rs.Fields("name")& ";"

 RS.movenext

Loop

RS.Close

conn.Close

GetExchangeServers=Split(strResults,";")

End Function

Sub GetStorageGroups(strServer)

'Get list of Storage Groups on specified server

Dim objRootDSE

Dim objConfiguration

Dim conn

Dim cmd

Dim RS

Set objRootDSE = GetObject("LDAP://rootDSE")

strConfiguration = "LDAP://" & objRootDSE.Get("configurationNamingContext")

Set objConfiguration = GetObject(strConfiguration)

strPath=objConfiguration.ADSpath

strQuery="Select distinguishedname,name,whencreated from '" & strPath &_

 "' WHERE objectclass='msExchStorageGroup'"

set cat=GetObject("GC:")

for each obj in cat

 set GC=obj

Next

set conn=Createobject("ADODB.Connection")

set cmd=CreateObject("ADODB.Command")

conn.Provider="ADSDSOObject"

conn.Open

set cmd.ActiveConnection=conn

set RS=conn.Execute(strQuery)

do while not RS.EOF

 If InStr(UCase(RS.Fields("distinguishedname")),UCase(strServer)) then

 WScript.echo RS.Fields("name") & "(Created " &_

 rs.fields("whencreated") & ")"

 SGReport strServer,RS.Fields("name")

 End If

 rs.movenext

Loop

rs.Close

conn.Close

End Sub

Chapter 15: Exchange 2003 Scripting 457

Sub ExchangeServerInfo(strSrv)

Set objWMIService = GetObject("winmgmts:\\" & strSrv &_

 "\root\MicrosoftExchangev2")

Set colItems = objWMIService.ExecQuery("Select AdministrativeGroup,DN," &_

"ExchangeVersion,FQDN,Name,RoutingGroup,CreationTime,Name," &_

"IsFrontEndServer,MessageTrackingEnabled,SubjectLoggingEnabled," &_

"LastModificationTime from Exchange_Server where name='" & strSrv &_

 "'",,48)

For Each objItem In colItems

 If objItem.FQDN="" Then

 WScript.echo "Failed to get Exchange server information from WMI." &_

 " Verify the Microsoft Exchange Management service is running on " &_

 strSRV

Else

 wscript.echo UCase(objItem.FQDN) & " [" &_

 objItem.Exchangeversion & "]"

 wscript.echo "Administrative Group: " &_

 objItem.AdministrativeGroup

 wscript.echo "Last modified: " &_

 ConvertTime(objItem.LastModificationTime)

 WScript.echo "Front End Server: " & objItem.IsFrontEndServer

 wscript.echo "Message Tracking: " & objItem.MessageTrackingEnabled

 WScript.echo "Subject logging: " & objItem.SubjectLoggingEnabled

End If

Next

End Sub

Function ConvertTime(strTime)

On Error Resume Next

yr = Left(strTime,4)

mo = mid(strTime,5,2)

dy = mid(strTime,7,2)

tm = Mid(strTime,9,6)

ConvertTime=mo & "/" & dy & "/" & yr

End Function

Sub ExchangeServerState(strComputer,UserName,Password)

Dim objWMIService

Dim propValue

Dim objItem

Dim SWBemlocator

Dim colItems

Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = SWBemlocator.ConnectServer(strComputer,_

"\root\cimv2\applications\exchange",UserName,Password)

strQuery="Select * from ExchangeServerState"

Set colItems = objWMIService.ExecQuery(strQuery,,48)

For Each objItem in colItems

 WScript.Echo "ClusterState: " & objItem.ClusterState

 WScript.Echo "ClusterStateString: " & objItem.ClusterStateString

458 Part IV: Scripting for the Enterprise

 WScript.Echo "CPUState: " & objItem.CPUState

 WScript.Echo "CPUStateString: " & objItem.CPUStateString

 WScript.Echo "DisksState: " & objItem.DisksState

 WScript.Echo "DisksStateString: " & objItem.DisksStateString

 WScript.Echo "DN: " & objItem.DN

 WScript.Echo "GroupDN: " & objItem.GroupDN

 WScript.Echo "GroupGUID: " & objItem.GroupGUID

 WScript.Echo "GUID: " & objItem.GUID

 WScript.Echo "MemoryState: " & objItem.MemoryState

 WScript.Echo "MemoryStateString: " & objItem.MemoryStateString

 WScript.Echo "Name: " & objItem.Name

 WScript.Echo "QueuesState: " & objItem.QueuesState

 WScript.Echo "QueuesStateString: " & objItem.QueuesStateString

 WScript.Echo "ServerMaintenance: " & objItem.ServerMaintenance

 WScript.Echo "ServerState: " & objItem.ServerState

 WScript.Echo "ServerStateString: " & objItem.ServerStateString

 WScript.Echo "ServicesState: " & objItem.ServicesState

 WScript.Echo "ServicesStateString: " & objItem.ServicesStateString

 WScript.Echo "Unreachable: " & objItem.Unreachable

 WScript.Echo "Version: " & objItem.Version

Next

End Sub

Sub GetServiceStatus(strSrv)

On Error Resume Next

Set objWMIService = GetObject("winmgmts://" & strSrv)

strQuery="Select displayname,startmode,status,state from Win32_service " &_

"where displayname LIKE 'Microsoft Exchange%'"

Set colSvcs=objWMIService.ExecQuery(strQuery,,48)

For Each svc In colSvcs

 WScript.Echo svc.DisplayName & vbTab & svc.state & vbTab &_

 svc.startmode

Next

End Sub

Sub SGReport(strServer,strSG)

Dim iServer

Dim iSGs

Dim iMBS

Set iServer=CreateObject("CDOEXM.ExchangeServer")

Set iSGs=CreateObject("CDOEXM.StorageGroup")

Set iMBS=CreateObject("CDOEXM.MailboxStoreDB")

iServer.DataSource.Open strServer

arrSGs=iServer.StorageGroups

For i=0 To UBound(arrSGs)

 strSGUrl=arrSGs(i)

 'WScript.Echo strSGUrl

 If InStr(UCase(strSGUrl),UCase(strSG)) Then

Chapter 15: Exchange 2003 Scripting 459

 iSGs.DataSource.Open "LDAP://" & iServer.DirectoryServer &_

 "/" & strSGUrl

 'strData=strData & iSGs.Name & VbCrLf

 WScript.Echo vbTab & "LogPath: " &iSGs.LogFilePath

 WScript.Echo vbTab & "SystemPath:" & iSGs.SystemFilePath

 WScript.Echo " MailBox Stores:"

 arrMBStores=iSGs.MailboxStoreDBs

 For j=0 To UBound(arrMBStores)

 iMBS.DataSource.open "LDAP://" & arrMBStores(j)

 WScript.Echo vbTab & iMBS.Name

 WScript.Echo vbTab & " DBPath:" & iMBS.DBPath

 WScript.Echo vbTab & " StreamingPath:" & iMBS.SLVPath

 WScript.Echo vbTab & " Last Backup:" & iMBS.LastFullBackupTime

 WScript.Echo vbTab & " StorageQuotaWarning:" & iMBS.StoreQuota

 WScript.Echo vbTab & " StorageQuotaLimit:" & iMBS.OverQuotaLimit

 ListMailboxes iMBS.Name

 Next

 End If

Next

End Sub

Sub ListMailboxes(strMailStore)

On Error Resume Next

Dim objRootDSE

Dim objConfiguration

Dim conn

Dim cmd

Dim RS

Set objRootDSE = GetObject("LDAP://rootDSE")

strConfiguration = "LDAP://" & objRootDSE.Get("configurationNamingContext")

Set objConfiguration = GetObject(strConfiguration)

strPath=objConfiguration.ADSpath

strQuery="Select distinguishedname,name,homeMDBBL from '" & strPath &_

"' WHERE objectclass='msExchPrivateMDB' AND name='" & strMailStore & "'"

set cat=GetObject("GC:")

for each objcat in cat

 set GC=objcat

Next

set conn=CreateObject("ADODB.connection")

set cmd=CreateObject("ADODB.Command")

conn.Provider="ADSDSOObject"

conn.Open

set cmd.ActiveConnection=conn

set RS=conn.Execute(strQuery)

do while not RS.EOF

 WScript.Echo RS.Fields("distinguishedname")

 WScript.Echo vbTab & "Mailboxes on " & RS.Fields("name")

 tmpArray=RS.Fields("homeMDBBL")

 For m=0 To UBound(tmpArray)

 WScript.Echo vbTab & " " & tmpArray(m)

 Next

460 Part IV: Scripting for the Enterprise

 RS.movenext

Loop

rs.Close

conn.Close

End Sub

Sub GetQueueInfo(strSrv)

On Error Resume Next

Set objWMIService = GetObject("winmgmts:\\" & strSrv &_

 "\root\MicrosoftExchangev2")

strQuery="Select * from Exchange_Queue"

Set colItems = objWMIService.ExecQuery(strQuery,,48)

wscript.Echo "Queue (Protocol)" & vbTab & "Size (MsgCount)"

For Each objItem In colItems

wscript.Echo objItem.LinkName & "(" & objItem.ProtocolName & ")" &_

vbTab & FormatNumber(objItem.Size/1024,2) & "(" &_

 objItem.MessageCount & ")"

Next

End Sub

Sub GetPublicFolderInfo(strComputer,UserName,Password)

On Error Resume Next

Dim objWMIService

Dim propValue

Dim objItem

Dim SWBemlocator

Dim colItems

Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = SWBemlocator.ConnectServer(strComputer,_

"\root\microsoftexchangev2",UserName,Password)

strQuery="Select * from Exchange_PublicFolder"

Set colItems = objWMIService.ExecQuery(strQuery,,48)

For Each objItem in colItems

 WScript.Echo "AddressBookName: " & objItem.AddressBookName

 WScript.Echo "CreationTime: " & ConvertTime(objItem.CreationTime)

 WScript.Echo "DeletedItemLifetime: " & objItem.DeletedItemLifetime

 WScript.Echo "Description: " & objItem.Description

 WScript.Echo "FolderTree: " & objItem.FolderTree

 WScript.Echo "FriendlyUrl: " & objItem.FriendlyUrl

 WScript.Echo "HasChildren: " & objItem.HasChildren

 WScript.Echo "HasLocalReplica: " & objItem.HasLocalReplica

 WScript.Echo "InstallDate: " & ConvertTime(objItem.InstallDate)

 WScript.Echo "IsMailEnabled: " & objItem.IsMailEnabled

 WScript.Echo "IsNormalFolder: " & objItem.IsNormalFolder

 WScript.Echo "IsSecureInSite: " & objItem.IsSecureInSite

 WScript.Echo "LastAccessTime: " & ConvertTime(objItem.LastAccessTime)

 WScript.Echo "LastModificationTime: " &_

 ConvertTime(objItem.LastModificationTime)

 WScript.Echo "MaximumItemSize: " & objItem.MaximumItemSize

 WScript.Echo "MessageCount: " & objItem.MessageCount

Chapter 15: Exchange 2003 Scripting 461

 WScript.Echo "MessageWithAttachmentsCount: " &_

 objItem.MessageWithAttachmentsCount

 WScript.Echo "Name: " & objItem.Name

 WScript.Echo "NormalMessageSize: " & objItem.NormalMessageSize

 WScript.Echo "OwnerCount: " & objItem.OwnerCount

 WScript.Echo "ParentFriendlyUrl: " & objItem.ParentFriendlyUrl

 WScript.Echo "Path: " & objItem.Path

 WScript.Echo "ProhibitPostLimit: " & objItem.ProhibitPostLimit

 WScript.Echo "PublishInAddressBook: " & objItem.PublishInAddressBook

 WScript.Echo "ReplicaAgeLimit: " & objItem.ReplicaAgeLimit

 for each propValue in objItem.ReplicaList

 WScript.Echo "ReplicaList: " & propValue

 Next

 WScript.Echo "ReplicationMessagePriority: " &_

 objItem.ReplicationMessagePriority

 for each propValue in objItem.ReplicationSchedule

 WScript.Echo "ReplicationSchedule: " & propValue

 Next

 WScript.Echo "ReplicationStyle: " & objItem.ReplicationStyle

 WScript.Echo "RestrictionCount: " & objItem.RestrictionCount

 for each propValue in objItem.SecurityDescriptor

 WScript.Echo "SecurityDescriptor: " & propValue

 Next

 WScript.Echo "Status: " & objItem.Status

 WScript.Echo "StorageLimitStyle: " & objItem.StorageLimitStyle

 WScript.Echo "TotalMessageSize: " & objItem.TotalMessageSize

 WScript.Echo "Url: " & objItem.Url

 WScript.Echo "UsePublicStoreAgeLimits: " &_

 objItem.UsePublicStoreAgeLimits

 WScript.Echo "UsePublicStoreDeletedItemLifetime: " &_

 objItem.UsePublicStoreDeletedItemLifetime

 WScript.Echo "WarningLimit: " & objItem.WarningLimit

 WScript.Echo VbCrLf

Next

End Sub

The main part of the script gets an array of all the Exchange servers in the organization by call-
ing the GetExchangeServers function, and then it simply enumerates each server.

arrServers=GetExchangeServers

For s = 0 To UBound(arrServers)-1

 WScript.Echo "*****Server Information*****"

 ExchangeServerInfo arrServers(s)

 WScript.Echo "*****Server Status*****"

 ExchangeServerState arrServers(s),"",""

 WScript.Echo "*****Service Status*****"

 GetServiceStatus arrServers(s)

 WScript.Echo "*****Queue Status*****"

 GetQueueInfo arrServers(s)

 WScript.Echo "*****Storage Groups*****"

 GetStorageGroups arrServers(s)

 WScript.Echo "*****Public Folders*****"

 GetPublicFolderInfo arrServers(s),"",""

Next

462 Part IV: Scripting for the Enterprise

We’ve broken the script into subroutines and functions that are called from the main part
of the script. Most of these take the Exchange server’s name as a parameter. As you look
through the script, you will see that we use ADSI, WMI, CDOEXM, and ADO. We won’t
go through this script because we’ve covered most of the sections earlier in the chapter. We
hope you will use portions of this script as building blocks for your own Exchange adminis-
trative scripts.

Summary
In this chapter, we showed you how to manage an Exchange 2003 server. There is no single
scripting technology, but rather a collection of technologies that you must master depending
on what you want to manage. You need to use ADSI, ADO, CDOEXM, and WMI to fully mas-
ter your Exchange environment. We demonstrated how to manage servers, storage groups,
mailbox stores, and mailboxes. There is a great deal more to scripting with Exchange 2003,
enough to fill a book on its own. We encourage you to download and use the Exchange 2003
SDK, which will make script development much easier. Finally, we urge you to establish a test
environment if you don’t already have one. You can easily bring down an Exchange server or
lose data through a poorly developed and tested script. We always stress testing, but given the
business critical nature of e-mail, this is even more important.

On the CD Included on the companion CD is an HTA that can be used to monitor an
Exchange 2003 server. It utilizes much of the code we’ve demonstrated in this chapter. You will
also find links to some helpful Web sites for scripting with Exchange 2003.

463

Chapter 16

Microsoft Operations Manager
2005 Scripting

In this chapter:

Introducing MOM Scripting. 464

Using Scripts in MOM . 473

Customizing MOM Scripts . 478

Viewing MOM Scripting in Action . 479

Summary . 482

Microsoft Operations Manager 2005 (MOM) keeps a close eye on your enterprise and can
react, repair, or restore based on detected events. The MOM toolbox includes an extensive
script library. These scripts are executed remotely on enterprise servers. In this chapter, we’ll
examine how MOM uses scripts, how those scripts are constructed, and how you can add
your own scripts to MOM.

MOM 2005 is an enterprise-management application. MOM deploys management agents that
monitor the health and status of a server. These agents report back to MOM where informa-
tion is consolidated and reported to network administrators. In this chapter, we assume that
you have at least a passing familiarity with the product.

More Info For more information about Microsoft Operations Manager 2005 and to down-
load an evaluation version, visit the Microsoft Web site at

http://www.microsoft.com/mom/default.mspx

(This link is on the companion CD; click Microsoft Operations Manager Home.)

MOM includes a number of scripts, and most of the management packs that you install with
MOM also include scripts. After installing a few key management packs, such as Exchange
2003, Active Directory, Group Policy, and Windows Operating System, you will have quite
a few scripts at your disposal, as shown in Figure 16-1 on the next page. Many of these scripts
use WMI.

464 Part IV: Scripting for the Enterprise

Figure 16-1 MOM scripts in the Administrator console

You might come across some scripts that you’d like to run on your own, or perhaps that you’d
like to include as part of a MOM event. Don’t try copying and pasting code just yet. Scripts for
MOM are a little bit different than traditional scripts. We’ll go through the differences and
show you how to convert traditional scripts to MOM scripts.

Introducing MOM Scripting
One of the biggest differences between the scripts we’ve been working with so far and the
scripts in MOM is how scripts are executed and processed. In traditional scripting, a script is
executed on a host computer, and even if the target of the script is a remote system, the results
can be returned to the host computer by using wscript.echo.

In a MOM environment, all scripts are executed on the remote machine by the MOM agent.
There is absolutely no user interaction. The scripts run silently in the background. This means
that no script intended for MOM can require user input, such as through an input or message
box. MOM scripts also can’t use wscript.echo because there is no administrator to receive the
message. In fact, when scripting with MOM, we don’t use the WScript environment at all.
Instead, MOM uses a new scripting host called ScriptContext. In MOM, scripts run in the con-
text of the MOM agent and report back to the MOM server. That’s a pretty simplified explana-
tion, but it should suffice for our purposes.

Note You don’t have to instantiate the ScriptContext object because it is implicitly created
by MOM. In much the same way that you never have to instantiate WScript, it’s just there.

Chapter 16: Microsoft Operations Manager 2005 Scripting 465

This means that commands like wscript.echo and wscript.sleep will no longer function when the
script is executed by MOM. Equivalent methods are available, but we use the ScriptContext
object instead. Tables 16-1 and 16-2 list the methods and properties for ScriptContext.

Table 16-1 ScriptContext Methods

Name Description

CreateAlert Generates a new Alert object

CreateDiscovery-
Data

Generates a new DiscoveryData object

CreateEvent Generates a new Event object

CreatePerfData Generates a new PerfData object

Echo Writes messages to a text file for debugging purposes

GetOverride Gets the specified override for the current rule

GetScriptState Gets the ScriptState object

IsAlert Determines whether the object provided to the script by MOM is an Alert
object

IsEvent Determines whether the object provided to the script by MOM is an Event
object

IsPerfData Determines whether the object provided to the script by MOM is a PerfData
object

Quit Stops the running of the script and exits

Sleep Suspends the running of the script for the specified number of seconds

Submit Submits an Alert, Event, PerfData, or DiscoveryData object to the MOM data
stream

Table 16-2 ScriptContext Properties

Name Description

Alert Gets the Alert object that caused MOM to invoke the script

Event Gets the Event object that caused MOM to invoke the script

IsTargetAgentless Checks whether the computer is monitored without a MOM agent

IsTargetVirtual-
Server

Gets a Boolean value indicating whether the computer is running as a
Windows Server Cluster server

ManagementGroup-
Name

Gets the name of the management group that deployed the current
response

Name Gets the name of the current script

ProcessingRule Returns the processing rule that invoked the current response script

Parameters Gets a VarSet object that contains the parameters sent from MOM when the
script was invoked

PerfData Gets the PerfData object that caused MOM to invoke the script

TargetComputer Gets the name of the computer being monitored

TargetComputer-
Identity

Gets the identity of the target computer for the current script response

466 Part IV: Scripting for the Enterprise

You will probably recognize some of the methods. Some will behave just as they do in
WScript, but others are a little different.

Keep in mind that the purpose of MOM is centralized management, and that scripts run
where no human can watch. We can still echo information from the script, but it won’t appear
in a command window or message box. When we call ScriptContext.Echo, it will send the mes-
sage to the MOM server. If the script is called as part of a response script, the message will be
written to the MOM log file. If the script is part of a MOM task, the message will be written to
the task event window. We cover response scripts and task scripts later in this chapter.

Adding Scripts

Because MOM stores everything in a SQL database, you can’t simply copy a script file to the
MOM server. You need to create an entry for it in the database and then insert the contents of
the script. Unfortunately, there isn’t an elegant way to insert code. Follow these steps.

1. Open the MOM Administrator console on the MOM server.

2. Open your script in Microsoft Notepad. Select and copy the script.

3. Navigate to the Scripts folder.

4. Right-click the Scripts folder, and click Create Script.

5. Enter a script name and description. If your script is not written in VBScript, select the
appropriate language. Click Next.

6. Press Ctrl+V to paste your copied script into the window. Click Next.

7. To define run time parameters, click Add, and then enter a name, a description, and a
default value. Click Finish, and your script will be added to the list. It is now available for
any MOM task, event, or response that you would like to create.

8. To edit a script, right-click it in the right pane, and click Properties. Click the Script tab.
Select the text, and copy and paste it into Notepad or your script editor.

TargetNetbios-
Computer

Gets the target computer’s NetBIOS name

TargetNetbios-
Domain

Gets the target computer’s NetBIOS domain name

TargetFQDN-
Computer

Gets the target computer’s fully qualified domain name

Table 16-2 ScriptContext Properties

Name Description

Chapter 16: Microsoft Operations Manager 2005 Scripting 467

Defining Script Parameters

In traditional VBScript, we use the wscript.arguments property to get run-time parameters.
However, the wscript object is not available when running scripts under MOM. Instead, we use
the ScriptContext.Parameters property. When you create a script in MOM, you define the
required run time parameters, as illustrated in Figure 16-2.

Figure 16-2 MOM script parameters

Within the script, you typically set an internal variable with the parameter value by using
ScriptContext.Parameters.Get.

 strDomainFilter = Trim(ScriptContext.Parameters.Get("Domains"))

 On Error Resume Next

 Dim strSeparator

 If CBool(Trim(ScriptContext.Parameters.Get("CSV"))) Then

 strSeparator = ","

 Else

 strSeparator = vbTab

 End If

Best Practices As with any script, you should check for the existence of required parame-
ters and validate them. If something isn’t correct, use ScriptContext.Echo to write information
to the event tab and gracefully terminate the script. This way, when you check the task status
in the MOM Operator console, you have an indication of what went wrong.

468 Part IV: Scripting for the Enterprise

Using Run Time Scripting Objects

The ScriptContext object is only one type of MOM run-time scripting object. However, as you
can tell from Table 16-1, it is used to create several other objects that you will find useful.

Using the PerfData Object

Just as you can use the Performance Monitor management console or monitor counters in
MOM, you can also create a PerfData object to work with performance counters that return
the information to the MOM server. This means that you can create custom performance
counters from just about anything you calculate as a number, such as the size of a file or the
number of processes running at any given time.

To create performance data, you need a PerfData object, a name for your custom counter,
a name of the instance, and the value you want to record. After you have this information,
you use ScriptContext.Submit to send the information to the MOM server. The script in Listing
16-1 creates a new custom performance counter called ProcessCount that returns the number
of processes running on the managed server. After you add the script to MOM, you create a
task or a timed event to run the script on the managed computer.

Listing 16-1 Create Counter
On Error Resume Next

Dim strComputer

Dim objWMIService

Dim propValue

Dim objItem

Dim SWBemlocator

Dim colItems

strComputer = "."

iCount=0

Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = SWBemlocator.ConnectServer(strComputer,"\root\CIMV2")

Set colItems = objWMIService.ExecQuery("Select caption from Win32_Process"_

,,48)

For Each objItem in colItems

 iCount=iCount+1

 ScriptContext.Echo "Caption: " & objItem.Caption

Next

ScriptContext.echo iCount & " Processes counted."

CreatePerfData "Processes","Process Count","ProcessInfo",iCount

Sub CreatePerfData(strObjectName,strCounterName,strInstanceName,numValue)

 Set objPerfData = ScriptContext.CreatePerfData

 objPerfData.ObjectName = strObjectName

 objPerfData.CounterName =strCounterName

 objPerfData.InstanceName = strInstanceName

 objPerfData.Value = numValue

 ScriptContext.Submit objPerfData

End Sub

Chapter 16: Microsoft Operations Manager 2005 Scripting 469

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

The first part of the script is basic WMI code that counts the number of processes running on
the local computer.

Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator")

Set objWMIService = SWBemlocator.ConnectServer(strComputer,"\root\CIMV2")

Set colItems = objWMIService.ExecQuery("Select caption from Win32_Process",,48)

For Each objItem in colItems

 iCount=iCount+1

 ScriptContext.Echo "Caption: " & objItem.Caption

Next

The ScriptContext.Echo command sends the output to the Properties tab of the event task, as
shown in Figure 16-3.

Figure 16-3 Event task properties

The counter we are creating is the number of current processes running, which is stored in the
iCounter variable. We call the CreatePerfData subroutine, which creates the PerfData object
and submits it to the MOM server. The subroutine needs to know the name of the perfor-
mance object, the counter name, an instance name, and the value of the instance.

CreatePerfData "Processes","Process Count","ProcessInfo",iCount

Within the subroutine, we use ScriptContext.CreatePerfData to create the PerfData object. The
subroutine then sets some object properties and submits it to MOM.

470 Part IV: Scripting for the Enterprise

Sub CreatePerfData(strObjectName,strCounterName,strInstanceName,numValue)

 Set objPerfData = ScriptContext.CreatePerfData

 objPerfData.ObjectName = strObjectName

 objPerfData.CounterName =strCounterName

 objPerfData.InstanceName = strInstanceName

 objPerfData.Value = numValue

 ScriptContext.Submit objPerfData

End Sub

Depending on how often you execute the script, you can generate a nice performance graph in
MOM, as shown in Figure 16-4.

Figure 16-4 Customized performance graph

Using the Alert Object

The Alert object can be created or manipulated by the ScriptContext.CreateAlert method or
ScriptContext.Alert property. Just as we did with the PerfData object, we can create a custom
alert based on whatever scripted criteria we want. There are many alert properties that you can
specify, but typically you will want to at least specify the following:

■ Name This property is the name you want to use to define the alert.

■ Level This property is the alert severity. The following values are used to indicate the
severity level for the alert.

■ 10. This value indicates success.

■ 20. This value indicates information.

■ 30. This value indicates a warning.

■ 40. This value indicates an error.

■ 50. This value indicates a critical error.

Chapter 16: Microsoft Operations Manager 2005 Scripting 471

■ 60. This value indicates a security issue.

■ 70. This value indicates that the service is unavailable.

■ ResolutionState This property indicates the alert’s resolution status. Typically, when
creating a new alert, you will set this to 0.

■ Description This property is a brief description of the alert or problem.

■ Owner This property is the name of the user or group that will be responsible for
the alert.

This short script in Listing 16-2 demonstrates how to create a new alert in MOM.

Listing 16-2 Create Alert
'Create the Alert object

Set objCreatedAlert = ScriptContext.CreateAlert()

'Set Alert properties

objCreatedAlert.Name = "Test Alert"

objCreatedAlert.AlertLevel = 20

objCreatedAlert.Owner = "[unassigned]"

objCreatedAlert.ResolutionState = 0

objCreatedAlert.Description="This is a test demonstration alert."

'Submit the Alert object to MOM

ScriptContext.Submit objCreatedAlert

Figure 16-5 shows the resulting alert in the MOM Operator console.

Figure 16-5 MOM test alert properties

Using the Event Object

The Event object is typically used in MOM to refer to any event-related element, such as an
application log or NT event log. However, just as with PerfData and Alert objects, we can create
our own events through a script, or we can handle events for which MOM doesn’t have a pro-
vider. Just as with the previous objects, we use ScriptContext to create the object and define its
properties, and we then use ScriptContext.Submit to commit the object to the MOM server. At
minimum, you should set the properties shown on the next page.

472 Part IV: Scripting for the Enterprise

■ EventNumber This is typically the Windows event ID number, but you can use any
number you want when creating your own events.

■ EventSource This is the source of the event. It is typically the application, but you might
want to set it to the name of the script that generated the event.

■ EventType This is a value that indicates the type of event, such as Success, Failure, or
Information. The script in Listing 16-3 defines these values as constants.

■ Message This is the text you want to display as part of the event.

Listing 16-3 Create Event
Const EVENT_TYPE_SUCCESS = 0

Const EVENT_TYPE_ERROR = 1

Const EVENT_TYPE_WARNING = 2

Const EVENT_TYPE_INFORMATION = 4

Const EVENT_TYPE_AUDITSUCCESS = 8

Const EVENT_TYPE_AUDITFAILURE = 16

'Create the Event object

Set objEvent = ScriptContext.CreateEvent()

'Define Event properties

objEvent.EventSource = "Demo Event Script"

objEvent.EventNumber = 9999

objEvent.EventType = EVENT_TYPE_INFORMATION

objEvent.Message="Your sample event has been raised."

'submit the Event object to MOM

ScriptContext.Submit objEvent

The graphic in Figure 16-6 illustrates the resulting event.

Figure 16-6 MOM test event results

Chapter 16: Microsoft Operations Manager 2005 Scripting 473

Understanding Script Tracing and Debugging

Debugging scripts with MOM is much more complicated than traditional VBScript debugging
because you can’t “see” what the script is doing. If you need true debugging, you will need
to use Microsoft Visual Studio .NET and remotely connect a debugger. (Debugging with
Microsoft .NET is outside the scope of this book.) However, you can enable tracing on the
managed server. When tracing is enabled, any ScriptContext.Echo commands will write to the
trace log file. Here are the steps from the MOM SDK documentation.

1. Run Windows Registry Editor (Regedit.exe).

2. Browse to the HKEY_LOCAL_MACHINE\SOFTWARE\Mission Critical Software\
OnePoint registry key.

3. If EnableActiveDebugging does not already exist, create a new DWORD entry for it. Set
the value of the EnableActiveDebugging entry to 1.

4. Tracing will begin the next time the MOM service starts. You can restart the service
immediately, or wait until the next scheduled restart.

The file will be created in the %TEMP%\Microsoft Operation Manager folder and called
something like AgentResponses-MOMGroup.log, where MOMGroup is the name of your man-
agement group.

To disable tracing, change EnableActiveDebugging to 0. The new settings will take effect the
next time the MOM service starts. Be sure to turn off tracing when you are finished, because
tracing can add significant overhead and will cause a performance penalty.

Note You will need to install the MOM SDK in order to enable tracing.

Using Scripts in MOM
After a script has been defined in MOM, it can be used locally on the MOM server or on the
managed server. When the script executes on the managed server, the MOM agent running on
that server executes that script. Because the MOM agent service account is usually running
under Local System, the script can only access local resources and information. MOM scripts
generally fall into one of these four categories: response scripts, timed scripts, state variable
scripts, and discovery scripts.

Using Response Scripts

This type of script is executed as a response to some event rule, performance counter value, or
alert. For example, you might have a rule or timed event that checks the size of an event log
and then defines a script that backs up the log to a file and then clears the log. You can have
multiple scripts as part of a response. If you have more than one, scripts run synchronously.
The script must also complete before the rest of the event or alert is processed by MOM.

474 Part IV: Scripting for the Enterprise

Using Timed Scripts

A timed script is special type of response script. You can create your own timed events in
MOM, and specify a script to run at the timed event interval. In the example just mentioned,
the response script was responsible only for backing up and clearing the event log. You could
just as easily create a script to run as part of a timed event that checks the size, reports the
sizes back to MOM, and if the size exceeds some threshold, backs up and clears the log. This
would be an ideal script in which to use parameters, such as the event log type, size threshold,
and backup directory.

Using State Variable Scripts

Scripts that store state variables can help you correlate events across multiple managed serv-
ers. State variables are globally available to all scripts as long as the MOM service is running
on the management server. If the service stops or restarts, the variables are reset. For example,
you might run a script against an Exchange 2003 server as part of a timed event that checks
the number of queues that have messages waiting to be delivered. If the number increases to
a certain level within 15 minutes, it might indicate a problem with DNS, network connectivity,
or a spreading virus. After 15 minutes, the script can be reset and start monitoring again.

The ScriptState object is used to store variable information across script sessions. Think of
ScriptState as a type of global cache for information you want to access across multiple scripts.
Within the ScriptState, create a varSet object for each piece of data you want to store.

This code snippet creates a new varSet object called Queue Tracker. Within the object, there is
a varSet variable called Number of Queues with messages, and it will have some value that you
specify, perhaps the result of a function that returns the number of Exchange queues with
messages.

Const VARSET_NAME = "Queue Tracker"

Const QUEUE_COUNT = "Number of Queues with messages"

iCount=GetQCount 'some function to return the number of queues

 'with messages.

'Create the ScriptState object

Set objScriptState = ScriptContext.GetScriptState()

'Create the VarSet object

Set objVarSet = objScriptState.CreateSet()

'save variable changes back to the VarSet

obVarSet.put QUEUE_COUNT, iCount

'save the VarSet by passing the name of the varSet

'object and the varSet object that was created in the script.

'You must do this to commit the change to the ScriptState.

objScriptState.SaveSet VARSET_NAME, objVarSet

Chapter 16: Microsoft Operations Manager 2005 Scripting 475

Tip As an alternative to CreateSet, you can use GetSet(varSetName). If the specified varSet
object exists, it will be returned; otherwise a new object will be created with the specified
name.

To read the varSet object, we need to get the ScriptState object and then use its GetSet method
to retrieve the specified varSet. After we have this object, we can get the variables that are
stored within the object.

Const VARSET_NAME = "Queue Tracker"

Const QUEUE_COUNT = "Number of Queues with messages"

'Create the ScriptState object

Set objScriptState = ScriptContext.GetScriptState()

'Get the VarSet object

Set objVarSet = objScriptState.GetSet(VARSET_NAME)

'Retrieve the value of Number of Queues with messages variable

'and set iStoredCount to this value.

iStoredCount=objVarSet.Get(QUEUE_COUNT)

Here is a more complete sample that puts both pieces of the task in a single script.

Const VARSET_NAME = "Queue Tracker"

Const QUEUE_COUNT = "Number of Queues with messages"

'Create the ScriptState object

Set objScriptState = ScriptContext.GetScriptState()

'Create the VarSet object

Set objVarSet = objScriptState.GetSet(VARSET_NAME)

iCount=GetQCount 'some function to return the number of queues

 'with messages.

'Get the stored value. Assuming this script runs every 15 minutes

'any value here will be the queue count from 15 minutes ago.

iStoredCount=objVarSet.Get(QUEUE_COUNT)

'compare the stored count with the current count

If iCount>iStoredCount Then

 'Count has increased

 'Execute some code to notify an administrator, write an event

 'or create an alert.

End If

'save variable changes back to the VarSet

obVarSet.put QUEUE_COUNT, iCount

'save the VarSet by passing the name of the varSet

'object and the varSet object that was created in the script.

'You must do this to commit the change to the ScriptState.

objScriptState.SaveSet VARSET_NAME, objVarSet

476 Part IV: Scripting for the Enterprise

If you are trying to troubleshoot ScriptState code, you can use the varSet object’s DumpToFile
method to write the contents of a specified varSet object to a text file.

Const VARSET_NAME = "Queue Tracker"

dtmNow = Now()

'specify the filename

strFileName = Month(dtmNow) & "_" & Day(dtmNow) & "_" & _

 Hour(dtmNow) & "_" & Minute(dtmNow) & "_" & _

 Second(dtmNow) & ".dat"

'Get the ScriptState

Set objScriptState = ScriptContext.GetScriptState()

'Get the varSet object

Set objVarSet = objScriptState.GetSet(VARSET_NAME)

objVarSet.DumpToFile strFileName

You might create a script like this and run it as a task on the MOM server to provide additional
monitoring capabilities for your Exchange 2003 servers.

Note If you don’t specify a filename and path, the file will be created in the Microsoft
Operations Manager 2005 folder.

Using Discovery Scripts

Discovery scripts are executed on either the MOM server or on the managed computer. These
scripts discover information based on computer attributes that are defined on the MOM
server. These attributes, such as operating system details, hardware, services, or applications,
help group managed computers so that the appropriate management rules are applied. The
ScriptContext object creates a DiscoveryData object by invoking the CreateDiscoveryData
method.

Set objDiscData=ScriptContext.CreateDiscoveryData()

You can’t directly add information to the DiscoveryData object. Instead, this object has col-
lections that you populate. When finished, you must call ScriptContext.Submit to save the
changes to the MOM server. Examine the script in Listing 16-4, which is from the IIS Manage-
ment Pack. When this script is run against a managed computer, it is “discovered” as an IIS
server, and added to the IIS server group in MOM.

Listing 16-4 Discover IIS Role
'---

' <company>Microsoft Corporation</company>

' <copyright>Copyright (c) Microsoft Corporation. All rights reserved.

' </copyright>

' <name>

' IIS Role Discovery

' </name>

' <summary>

Chapter 16: Microsoft Operations Manager 2005 Scripting 477

' Creates an IIS server role for this computer

' </summary>

'---

Option Explicit

Const COMPUTER_CLASS_ID = "Computer"

Const COMPUTER_COMPUTER_NAME_ATTRIBUTE_ID = "ComputerName"

Const COMPUTER_TIME_ZONE_BIAS_ATTRIBUTE_ID = "Time Zone Bias"

Const COMPUTER_OPERATING_SYSTEM_VERSION_ATTRIBUTE_ID =_

 "Operating System Version"

Const COMPUTER_IP_ADDRESS_ATTRIBUTE_ID = "IPAddress"

Const COMPUTER_FQDN_ATTRIBUTE_ID = "FQDN"

Const COMPUTER_VIRTUAL_SERVER_TYPE_ATTRIBUTE_ID = "Virtual Server Type"

Sub Main()

 Dim oDiscData

 Dim oCollection

 Dim oInstance

 Set oDiscData = ScriptContext.CreateDiscoveryData()

 Set oCollection = oDiscData.CreateCollection()

 oCollection.AddScopeFilter COMPUTER_COMPUTER_NAME_ATTRIBUTE_ID,_

 ScriptContext.TargetComputerIdentity

 oCollection.ClassID = "IIS"

 Set oInstance = oCollection.CreateInstance()

 oInstance.AddKeyProperty "Server Name",_

 ScriptContext.TargetNetbiosComputer

 oCollection.AddInstance oInstance

 oDiscData.AddCollection oCollection

 ScriptContext.Submit oDiscData

End Sub

Discovery scripts need a DiscoveryData object after which we can instantiate a
DiscoveryCollection object that will be used to hold information.

 Set oDiscData = ScriptContext.CreateDiscoveryData()

 Set oCollection = oDiscData.CreateCollection()

After we have a collection object, we need to add a scope filter.

 oCollection.AddScopeFilter COMPUTER_COMPUTER_NAME_ATTRIBUTE_ID,_

 ScriptContext.TargetComputerIdentity

We set the class ID for our discovered data, in this case, IIS.

 oCollection.ClassID = "IIS"

478 Part IV: Scripting for the Enterprise

To add more information to the collection, we create a new instance and define a property.

 Set oInstance = oCollection.CreateInstance()

 oInstance.AddKeyProperty "Server Name",_

 ScriptContext.TargetNetbiosComputer

We then need to add the instance to the collection.

 oCollection.AddInstance oInstance

We add the collection to the collection object.

 oDiscData.AddCollection oCollection

Finally, we submit the DiscoveryData object to the MOM server.

Note The SDK documentation for discovery scripts is very light and, frankly, not too helpful.
If you need to create custom discovery scripts, we recommend that you study some of the fin-
ished discovery scripts that come with MOM, and then modifying one of them to meet your
needs.

Customizing MOM Scripts
Depending on the management packs you install, your MOM server could have quite a few
scripts, some of which you might want to modify to better suit your purposes. Ideally, MOM
scripts will use parameters to make them more flexible, but this isn’t always the case. If you
want to modify an existing MOM script, the best course of action is to do it manually. View the
properties of the script, and then click the script source tab. Copy the script text, and paste it
into Notepad to create a new script file. Edit the script file as necessary, and when finished,
simply create a new script by following the steps we outlined earlier in this chapter under
“Adding Scripts.” You can then use the script however you want.

You might also find a MOM script that you would like to run as a separate script outside of the
MOM environment. However, you can’t simply paste the code into a new script and run it.
First, you must remove any code related to ScriptState, DiscoveryData, Alerts, or Events because
those objects don’t exist in VBScript. When modifying a MOM script, you need to replace
ScriptContext with wscript. Any ScriptContext.Echo statements should be replaced with
wscript.echo. You will have to determine how to handle anything else with ScriptContext.
If the script uses parameters, you will need to modify it to use wscript.arguments, or create
the standalone version as a Windows Script File (.wsf) and use named arguments.

What you will probably find most useful are the portable WMI functions and subroutines.
However, remember that MOM scripts are run locally on the managed server by the MOM
service account. You will need to modify the WMI code to access remote machines, and pass
credentials as necessary. To convert MOM scripts to standalone scripts, follow these steps.

Chapter 16: Microsoft Operations Manager 2005 Scripting 479

1. Remove references to any MOM-specific objects, such as ScriptState.

2. Convert ScriptContext.Echo to wscript.echo.

3. Remove all other references to ScriptContext.

4. Convert parameters to wscript.arguments or used named arguments with a .wsf script.

5. Convert WMI code to access remote machines, passing alternate credentials if neces-
sary.

Viewing MOM Scripting in Action
Let’s put some of what we’ve covered in this chapter into a new MOM script. When creating
your own MOM scripts, we recommend first developing and testing the core functionality
with a traditional script. After you know the VBScript code is correct, you can begin modifying
the script for use in a MOM environment, adding the MOM specific features as needed.

Listing 16-5 is a simple script that uses the Scripting.FileSystemObject to get the size of a speci-
fied folder. If the size exceeds a specified threshold, we want to raise an alert.

Listing 16-5 Check Folder Size
strFolder="e:\temp"

iThreshold=100000

iSize=GetFolderSize(strFolder)

If Int(iSize) > Int(iThreshold) Then

'folder size exceeds threshold so generate an alert

wscript.Echo "Alert!"

strDescription=strFolder & " has exceeded the specified threshold of " &_

FormatNumber(iThreshold,0,,True) & " bytes. Folder size is " &_

FormatNumber(iSize,0,,True) & " bytes"

wscript.echo strDescription

Else

'folder size is OK

WScript.Echo "The size of " &strFolder & " (" & iSize &_

 ") is within the threshold of " & iThreshold

End If

Function GetFolderSize(strFolder)

dim objFSO,objFldr

set objFSO=CreateObject("Scripting.FileSystemObject")

set objFldr=objFSO.GetFolder(strFolder)

GetFolderSize=objFldr.Size

End Function

As written, this script would not work in a MOM environment because it utilizes the wscript
object. We want to take advantage of some MOM benefits, such as using parameters, creating
alerts, and capturing performance data. The latter is especially useful because a performance
graph of folder size might help with capacity planning. The script in Listing 16-6 on the next
page is fundamentally the same script as Listing 16-5, with the addition of MOM-related
objects.

480 Part IV: Scripting for the Enterprise

Listing 16-6 Monitor Folder Size
strFolder=ScriptContext.Parameters.Get("folder")

iThreshold=ScriptContext.Parameters.Get("threshold")

iSize=GetFolderSize(strFolder)

If Int(iSize)>Int(iThreshold) Then

'folder size exceeds threshold so generate an alert

ScriptContext.Echo "Alert!"

strDescription=strFolder & " has exceeded the specified threshold of " &_

 FormatNumber(iThreshold,0,True) & " bytes. Folder size is " &_

 FormatNumber(iSize,0,True) & " bytes"

ScriptContext.echo strDescription

CreateAlert "Folder Size Exceeded",20,"[unassigned]",0,strDescription

Else

'folder size is OK

'write data to MOM event

ScriptContext.Echo strFolder & " is OK. Size=" &_

 FormatNumber(iSize,0,True) & " bytes"

End If

'create perfdata

CreatePerfData "Monitored Folder","FolderSize",strFolder,_

FormatNumber((iSize/1024000),2)

Function GetFolderSize(strFolder)

 dim objFSO,objFldr

 set objFSO=CreateObject("Scripting.FileSystemObject")

 set objFldr=objFSO.GetFolder(strFolder)

 GetFolderSize=objFldr.Size

End Function

Sub CreateAlert(strObjectName,iAlertLevel,strOwner,iResolutionState,_

strDescription)

 'Create the Alert object

 Set objCreatedAlert = ScriptContext.CreateAlert()

 'Set Alert properties

 objCreatedAlert.Name = strObjectName

 objCreatedAlert.AlertLevel = iAlertLevel

 objCreatedAlert.Owner = strOwner

 objCreatedAlert.ResolutionState = iResolutionState

 objCreatedAlert.Description=strDescription

 'Submit the Alert object to MOM

 ScriptContext.Submit objCreatedAlert

End Sub

Sub CreatePerfData(strObjectName,strCounterName,strInstanceName,numValue)

 'Create the PerfData object

 Set objPerfData = ScriptContext.CreatePerfData

 'Set PerfData properties

 objPerfData.ObjectName = strObjectName

 objPerfData.CounterName =strCounterName

 objPerfData.InstanceName = strInstanceName

 objPerfData.Value = numValue

 'Submit the PerfData object to MOM

 ScriptContext.Submit objPerfData

End Sub

Chapter 16: Microsoft Operations Manager 2005 Scripting 481

Let’s take a look at this script in more detail.

When we create a new script in MOM and paste this code, we have the option of defining
parameters. By using parameters, we can reuse this script in a variety of scheduled tasks that
can be run against a variety of managed servers with different parameters. The first two lines
define script variables from the task parameters that launched the script.

strFolder=ScriptContext.Parameters.Get("folder")

iThreshhold=ScriptContext.Parameters.Get("threshold")

We next define a variable for the current size of the folder by calling the GetFolderSize
function.

iSize=GetFolderSize(strFolder)

We’ve already tested this function in our VBS script, so we shouldn’t have any problems. If the
folder size is greater than the threshold, we want to record that information and generate an
alert.

If Int(iSize)>Int(iThreshold) Then

'folder size exceeds threshold so generate an alert

ScriptContext.Echo "Alert!"

strDescription=strFolder & " has exceeded the specified threshold of " &_

 FormatNumber(iThreshold,0,True) & " bytes. Folder size is " &_

 FormatNumber(iSize,0,True) & " bytes"

ScriptContext.echo strDescription

CreateAlert "Folder Size Exceeded",20,"[unassigned]",0,strDescription

The ScriptContext.Echo commands will write information to the event that is created when the
task completes. That might be enough if someone is monitoring events. It would also be nice
to create an alert object so that the problem can be addressed and resolved. We do this by call-
ing the CreateAlert subroutine that creates an Alert object.

Sub CreateAlert(strObjectName,iAlertLevel,strOwner,_

iResolutionState,strDescription)

 'Create the Alert object

 Set objCreatedAlert = ScriptContext.CreateAlert()

 'Set Alert properties

 objCreatedAlert.Name = strObjectName

 objCreatedAlert.AlertLevel = iAlertLevel

 objCreatedAlert.Owner = strOwner

 objCreatedAlert.ResolutionState = iResolutionState

 objCreatedAlert.Description=strDescription

 'Submit the Alert object to MOM

 ScriptContext.Submit objCreatedAlert

End Sub

This code is very similar to the code we used earlier in the chapter. We call the CreateAlert
method to create the object, set some properties, and use the Submit method to send the infor-
mation to MOM.

If the folder size is within the threshold, we simply log that information to the MOM event.

482 Part IV: Scripting for the Enterprise

Else

'folder size is OK

'write data to MOM event

ScriptContext.Echo strFolder & " is OK. Size=" & FormatNumber(iSize,0,True) & " bytes"

End If

The last thing we will do is capture the size information as a performance object. We call the
CreatePerfData subroutine.

'create perfdata

CreatePerfData "Monitored Folder","FolderSize",strFolder,_

FormatNumber((iSize/1024000),2)

The subroutine creates a new performance object called Folder Size. This will appear as a per-
formance counter for the managed server in the MOM Operator console. The instance is the
name of the monitored folder, and the value is the current size in megabytes. The GetFolder-
Size function returns a value in bytes, and we’ve simply formatted the number for megabytes.

Sub CreatePerfData(strObjectName,strCounterName,strInstanceName,numValue)

 'Create the PerfData object

 Set objPerfData = ScriptContext.CreatePerfData

 'Set PerfData properties

 objPerfData.ObjectName = strObjectName

 objPerfData.CounterName =strCounterName

 objPerfData.InstanceName = strInstanceName

 objPerfData.Value = numValue

 'Submit the PerfData object to MOM

 ScriptContext.Submit objPerfData

End Sub

Like the CreateAlert subroutine, all we need to do is create the PerfData object, set some prop-
erties, and submit the object to the MOM server.

As we’ve shown, you can easily take an existing administrative script and extend it to run in a
MOM environment, often with enhanced functionality.

Summary
In this chapter, we discussed how to work with scripts in a Microsoft Operations Manager
2005 environment. We explained that the ScriptContext object replaces wscript as the script
host on a MOM server, and we outlined how scripts execute on managed servers. We looked
at the different types of script objects in MOM such as Alerts, Performance Data, and Events.
You also learned various ways to use scripts, including as responses and scheduled tasks.
Finally, we demonstrated how to use extend existing scripts to run in a MOM environment.
Scripting with MOM is a bit more involved than traditional scripting, but it offers some tre-
mendous benefits and value.

More Info For more information, visit the Technet script center or look at the Web links for
this chapter on the companion CD.

483

Chapter 17

Virtual Server 2005 Scripting

In this chapter:

Introducing Virtual Server Scripting. 484

Understanding the Virtual Server Object Model . 486

Writing Provisioning Scripts . 488

Writing Management Scripts. 490

Viewing Virtual Server Scripting in Action . 498

Summary . 501

Microsoft Virtual Server 2005 represents one of Microsoft’s most script-accessible products
ever. Designed to expose much of its functionality through Component Object Model (COM)
objects, Virtual Server’s scriptability makes it highly manageable. We’ll explain the basics of
the Virtual Server object model, and show you some examples of how scripts can make Virtual
Server easier and more efficient to use.

When Microsoft purchased Virtual Server from its original creators, Connectix (http://
www.connectix.com), most industry watchers assumed that Microsoft would quickly release
the nearly completed product. Instead, Microsoft surprised everyone by spending quite a long
time improving Virtual Server’s stability and performance, as well as making it easier to man-
age through the addition of a comprehensive Component Object Model (COM)-based appli-
cation programming interface (API). That API ensures that other COM-compatible languages,
including VBScript, can automate management tasks related to virtual disk drives, virtual
machines, virtual networks, virtual server security, and more. Virtual Server comes with a
programmer’s guide that explains the complete API, so in this chapter, we focus on the core
capabilities that a Windows administrator will find most useful.

Note The techniques we demonstrate in this chapter only work with Virtual Server; they’re
not compatible with Virtual Server’s sibling product, Virtual PC. Virtual PC is intended to
run on client computers, and to run just a few virtual machines at once; Virtual Server is an
enterprise-level application, intended to continuously run a larger number of virtual machines
that act as actual production servers on your network.

484 Part IV: Scripting for the Enterprise

Introducing Virtual Server Scripting
Virtual Server is designed to run one or more virtual machines. A virtual machine is a represen-
tation of a physical computer. The base server on which Virtual Server runs is often referred to
as the host, and the copy of Microsoft Windows running on the host is referred to as the host
OS, or host operating system. The host hardware is often a high-end, multiprocessor server, and
the host OS is typically an edition of Microsoft Windows Server 2003. Each virtual machine
runs its own independent operating system, referred to as a guest OS. Virtual machines run-
ning under Virtual Server can run almost any version of Windows—including Microsoft Win-
dows NT—or almost any other operating system compatible with a 32-bit Intel processor,
including variations of Linux, different brands of Unix, and so forth. Each virtual machine has
one or more virtual disks, which are essentially files on the host computer that appear as stor-
age devices to a virtual machine. For example, a virtual machine running Microsoft Windows
2000 Server might have two hard disks, C and D, which are virtual disks that exist as two inde-
pendent files on the host computer. Similarly, a virtual network allows virtual machines to
communicate with one another.

More Info A full discussion of Virtual Server’s concepts and capabilities is beyond the scope
of this book. However, you can learn more from the Virtual Server Web site at

http://www.microsoft.com/virtualserver

Another good source of information is John Howard’s blog at

http://blogs.technet.com/howard/

Virtual Server’s API exposes five main categories of capabilities, each related to a specific func-
tional component of Virtual Server.

■ Virtual Server client capabilities, such as clicking a mouse button or pressing a key,
which allow you to automate tasks within a guest OS. Virtual Server doesn’t provide
direct automation within a virtual machine (meaning you can’t automate what goes on
inside the virtual machine’s guest operating system, although you can write scripts that
run within the virtual machine), but it does provide the ability to send keystrokes,
mouse clicks, and so forth into the virtual machine—essentially allowing you to auto-
mate the manual tasks that an on-site user would perform.

■ Virtual disk drives, including removable media devices such as DVD drives, as well as
virtual fixed storage such as virtual hard disks. The API also provides control over virtual
SCSI controllers and drives.

■ Virtual machine settings, including details of the virtual machine’s hardware (such as
ports), save states, and so forth.

■ Virtual network configurations, including virtual network adapters, virtual networks
that connect virtual machines, the built-in virtual DHCP server, and more.

Chapter 17: Virtual Server 2005 Scripting 485

■ Virtual Server access rights and security, including the ability to search for and list access
rights.

The Microsoft TechNet Script Center has a number of scripts designed to manage various
aspects of Virtual Server. You can access the complete collection at

http://www.microsoft.com/technet/scriptcenter/scripts/vs/default.mspx

On the CD This link is included on the companion CD. Click Script Repository-Virtual Server.

In fact, we use some of these scripts as the basis for our examples. We also show you how to
extend these examples into scripts that perform more comprehensive administrative tasks.

Virtual Hardware
If you’re planning to write scripts that run inside a virtual machine, your scripts will
need to be compatible with the guest OS running inside the virtual machine. You might,
however, be interested to know on what hardware the guest OS will be running, because
that information can also affect how you write your scripts.

Each virtual machine emulates an Intel 440BX chipset and an AMI BIOS. The processor
inside the virtual machine is exposed as the host computer’s processor, meaning the
processor isn’t emulated in any way—it’s simply passed through to the virtual machine.
For graphics, each virtual machine emulates an S3 Trio 32/64 with 4MB of video mem-
ory. Virtual machines also emulate a standard 104-key, Windows-compatible keyboard
with a PS/2 interface. (If you’re using a physical USB keyboard, the virtual machine still
sees it as a PS/2 keyboard; Virtual Server 2005 doesn’t support USB devices inside vir-
tual machines.) Similarly, the mouse inside each virtual machine is seen as a PS/2
mouse. No support is provided for sound or game controllers.

Each virtual machine can have up to two serial ports and one parallel port; again, USB
devices aren’t supported. Up to two 1.44-MB floppy drives can be attached. For hard
drives, up to four IDE devices can be attached, including CD-ROM or DVD drives. Up to
four SCSI host controllers can be emulated, as well; Virtual Server emulates an Adaptec
7870 SCSI controller chipset. Each controller can host up to seven virtual SCSI hard
disks. Virtual IDE CD-ROM and DVD-ROMs are limited to 128 GB in size, although to
store the maximum amount, you’ll obviously need sufficient physical storage on the
host computer. SCSI disk images can be up to 2 TB in size. SCSI CD-ROM or DVD-ROM
drives are not supported.

For the network, Virtual Server emulates a single DEC 21140 10/100-MB multi-port
Ethernet card, with up to four independent network connections on the card.

486 Part IV: Scripting for the Enterprise

The important things to remember about Virtual Server’s architecture—because they will come
up while you are scripting the product—are:

■ Virtual Server can contain one or more virtual machine configurations, which are all the
settings that comprise a virtual machine. When the virtual machine is executing, it’s
referred to as a session.

■ Each virtual machine has its own private, virtual resources, such as virtual disks, serial
ports, and so forth. Some of these resources, such as a serial port, might map to a phys-
ical resource on the host computer.

■ Virtual Server can contain one or more virtual networks, some of which might connect
to the host computer’s physical network. Each virtual machine can be connected to one
or more virtual networks by means of virtual network adapters.

Understanding the Virtual Server Object Model
The Virtual Server object model starts with the VirtualServer.Application object, which imple-
ments a COM interface named IVMVirtualServer. This object provides the means to access all
the other objects supported by the Virtual Server COM API. Some of the primary methods
and properties of the VirtualServer.Application object include the following:

■ FindVirtualMachine This method returns a virtual machine object (IVMVirtualMachine
interface) based on the configuration name you provide.

■ CreateVirtualMachine This method creates a new virtual machine configuration, and
returns a VirtualMachine object that represents the new virtual machine. There’s also a
DeleteVirtualMachine method that deletes a virtual machine configuration.

■ RegisterVirtualMachine This method adds an existing virtual machine configuration
to Virtual Server, allowing you to, for example, import virtual machines from another
server. The UnregisterVirtualMachine method removes a virtual machine without delet-
ing its configuration file from the disk.

■ FindVirtualNetwork, CreateVirtualNetwork, DeleteVirtualNetwork, RegisterVirtualNetwork,
and UnregisterVirtualNetwork These methods all perform tasks similar to the above,
but use virtual networks instead of virtual machines.

■ GetHardDisk, CreateFloppyDiskImage, GetFloppyDiskImageType, CreateDynamicVirtual-
HardDisk, CreateFixedVirtualHardDisk, CreateDifferencingVirtualHardDisk, and Create-
HostDriveVirtualHardDisk These methods all work with virtual storage.

Note A differencing disk contains all the differences in a virtual machine’s state. For
example, you can create a virtual machine, and then create a new differencing disk
based on the virtual machine’s original virtual disk. Any changes to the virtual machine
are stored on the differencing disk. By deleting the differencing disk and reverting to the
original virtual disk, you effectively roll back all the changes made to the virtual machine.
See the Virtual Server documentation for details.

Chapter 17: Virtual Server 2005 Scripting 487

■ GetConfigurationValue, RemoveConfigurationValue, and SetConfigurationValue These
methods allow you to work with virtual server configuration settings.

■ GetHardDiskFiles, GetVirtualMachineFiles, GetVirtualNetworkFiles, GetFloppyDiskFiles,
and GetDVDFiles These methods return arrays of the appropriate types of files.

■ AvailableSystemCapacity This method returns a percentage of available capacity, based
on the number of virtual machines currently running.

■ VirtualMachines This method returns a collection of VirtualMachine objects. You can
enumerate this collection to, for example, perform a task with each configured virtual
machine.

■ VirtualNetworks This method returns a collection of VirtualNetwork objects. You can
enumerate this collection to, for example, examine the properties of each configured vir-
tual network.

The Virtual Server API includes about 40 objects. In addition to the top-level Virtual-
Server.Application object, the ones you’re most likely to work with include the following
(we’re listing their COM interface names here):

■ IVMDHCPVirtualNetworkServer

■ IVMDVDDrive

■ IVMFloppyDrive

■ IVMGuestOS

■ IVMHardDisk

■ IVMHostInfo

■ IVMNetworkAdapter

■ IVMSCSIController

■ IVMSerialPort

■ IVMVirtualMachine

■ IVMVirtualNetwork

For example, here’s a quick script snippet that will display the name of all virtual machines
configured under Virtual Server.

Set objVS = CreateObject("VirtualServer.Application")

For Each objVM In objVS.VirtualMachies

 WScript.Echo "VM: " & objVM.Name

Next

488 Part IV: Scripting for the Enterprise

Note All the scripts in this chapter assume you’re running the script directly on the Virtual
Server computer, which is usually the only place the Virtual Server COM objects will be avail-
able. In theory, you can use the VBScript CreateObject function to instantiate the Virtual-
Server.Application object on a remote Virtual Server computer. We haven’t had consistent suc-
cess with this technique, though, and prefer to run our scripts directly on the Virtual Server
host. If you want to write scripts on your Windows XP Professional computer by using a com-
mercial script editor (such as PrimalScript or OnScript), you can install Virtual Server 2005 for
development purposes. That’ll give your computer the type libraries necessary to allow the
editors’ Intellisense-like code hinting features to work with the Virtual Server objects.

Writing Provisioning Scripts
Provisioning is the act of initially configuring a new virtual machine. Using a script to do this
can save time, and make the process of configuring multiple new virtual machines easier and
much more consistent. Creating a new virtual machine is straightforward.

Set objVS = CreateObject("VirtualServer.Application")

Set objVM = objVS.CreateVirtualMachine("MyMachine", _

 "D:\Virtual Machines\MyMachine")

After creating the new virtual machine, objVM will be a reference to the newly created virtual
machine object. Of course, a virtual machine by itself isn’t very useful. You at least need a hard
disk attached, and you’ll probably want to give the virtual machine a DVD-ROM drive so that
you can install an operating system. We usually prefer to create dynamic virtual hard disks,
which start out as smaller physical files and grow to the maximum size you specify (meaning
that a 4-GB disk won’t take up 4 GB of storage until it’s full). To create a new virtual machine,
assuming objVS is already instantiated as just shown, do the following:

errReturn = objVS.CreateDynamicVirtualHardDisk _

 ("D:\Virtual Machines\MyMachine\HardDisk.vhd", 10000)

This creates a new 10GB dynamic disk in the specified location. Let’s suppose that we have an
ISO-formatted DVD-ROM image that contains our operating system installation media. We’ll
now want to attach that DVD-ROM image, as well as the newly created hard disk, to the virtual
machine, which is represented by the variable objVM. First we’ll attach the hard drive image as
an IDE image (zero) by using the first IDE bus (zero), and then we’ll add the drive as device
zero. We’ll get back a HardDiskConnection object, which we’ll store in objDrive.

Set objDrive = objVM.AddHardDiskConnection _

 ("D:\Virtual Machines\MyMachine\HardDisk.vhd",0,0,0)

Now we’ll add a DVD-ROM drive. Again, we’ll attach it to the IDE bus (which is bus zero), but
this time, we make the DVD-ROM drive the first device (device zero) on the second bus.

Set objDVD = objVM.AddDVDROMDrive(0,1,0)

Chapter 17: Virtual Server 2005 Scripting 489

This returns a DVDDrive object, which we store in objDVD. To attach our ISO image, do the
following:

errReturn = objDVD.AttachImage("D:\ISO\Win2003Standard.iso")

We might now want to adjust some of the properties of the hard disk. The objDrive variable
represents the hard drive connection; to get the actual drive, we need to use the connection’s
HardDisk property.

Set objHDisk = objDrive.HardDisk

Right now, there’s not much we can do with the disk because it doesn’t contain any data, but
it’s useful to know how to access it.

Our virtual machine will probably be more useful if it has a network connection, too, so let’s
give it a network adapter.

Set objNIC = objVM.AddNetworkAdapter()

Right now, of course, we don’t have a network to plug the adapter into, so let’s create one.

Set objNetwork = CreateVirtualNetwork("MyNetwork", _

 "D:\Virtual Networks\MyNetwork\")

Now we can attach our virtual network adapter to the new virtual network.

objNIC.AttachToVirtualNetwork("MyNetwork")

All that’s left to do is start the new virtual machine. If that DVD-ROM ISO image we attached
is set up with an unattended installation script, the operating system installation can start by
itself and get our new virtual machine up and running. To start the virtual machine, do the
following:

objVM.Startup()

And that’s it. We’ve created a new virtual machine and started it. Listing 17-1 is the entire
script.

Listing 17-1 Create and Start a New Virtual Machine
Set objVS = CreateObject("VirtualServer.Application")

Set objVM = objVS.CreateVirtualMachine("MyMachine", _

 "D:\Virtual Machines\MyMachine")

'Create and attach the hard disk

errReturn = objVS.CreateDynamicVirtualHardDisk _

 ("D:\Virtual Machines\MyMachine\HardDisk.vhd", 10000)

Set objDrive = objVM.AddHardDiskConnection _

 ("D:\Virtual Machines\MyMachine\HardDisk.vhd",0,0,0)

'Attach DVD-ROM device and ISO image

490 Part IV: Scripting for the Enterprise

Set objDVD = objVM.AddDVDROMDrive(0,1,0)

objDVD.AttachImage "D:\ISO\Win2003Standard.iso"

'Get a reference to the hard disk, even though we are

'not going to use it right now

Set objHDisk = objDrive.HardDisk

'Attach virtual network adapter, create a network,

'and connect adapter to the network

Set objNIC = objVM.AddNetworkAdapter()

Set objNetwork = CreateVirtualNetwork("MyNetwork", _

 "D:\Virtual Networks\MyNetwork\")

objNIC.AttachToVirtualNetwork("MyNetwork")

objVM.Startup()

On the CD You will find this script, as well as other scripts listed in this chapter, on the CD
that accompanies this book.

This is the basic pattern most provisioning scripts will follow.

1. Create the new virtual machine.

2. Create peripherals, such as network adapters and disks.

3. Attach the peripherals to the virtual machine.

4. Set peripherals’ properties (such as attaching a DVD-ROM to an ISO image).

5. Start the virtual machine.

Prior to starting the virtual machine, you might want to configure other properties of the vir-
tual machine itself. For example, we usually include some of the following:

objVM.Undoable = True

objVM.UndoAction = 1

objVM.Memory = 256

objVM.AutoStartAtLaunch = True

These lines configure the new virtual machine to be undoable, specify that the current state
should be preserved when the virtual machine is shut down (as opposed to automatically
committing or rolling back the current state), specify that the virtual machine is given 256 MB
of memory, and configure the virtual machine to start when Virtual Server starts (that way, the
virtual machine is always running and available).

Writing Management Scripts
Virtual Server management scripts are useful for performing regularly scheduled tasks, auto-
mating tedious tasks, or automating tasks that need to be performed against multiple virtual
machines at once.

Chapter 17: Virtual Server 2005 Scripting 491

Obtaining Object References

Before you can work with a virtual machine, virtual network, virtual disk, or any other Virtual
Server object, you need to obtain a reference to the object. The top-level VirtualServer object
(using the ProgID VirtualServer.Application) provides methods that return references to vari-
ous types of objects. For example:

■ To obtain a reference to a virtual machine, use FindVirtualMachine("machinename").

■ To obtain a reference to a virtual network, use FindVirtualNetwork("networkname").

■ To obtain a reference to a virtual hard disk, use GetHardDisk("disk_file_path").

You can also enumerate through most second-level objects. For example, the VirtualServer
object includes a VirtualMachines property that is a collection of all virtual machines, and a
VirtualNetworks property that is a collection of all virtual networks. For example, to work
with a virtual machine named Win2003Server, you would execute the following:

Set objVS = CreateObject("VirtualServer.Application")

Set objVM = objVS.FindVirtualMachine("Win2003Server")

If you want to enumerate through all the virtual machines, execute the following:

Set objVS = CreateObject("VirtualServer.Application")

For Each objVM in objVS.VirtualMachines

 'objVM is a virtual machine object

Next

After you’ve obtained a reference to the appropriate object, you can work with its properties
and methods to manage it.

Managing Multiple-Virtual-Machine Templates

Managing multiple virtual machines is pretty straightforward. Simply write a script that does
whatever task you need for one virtual machine, being sure to refer to the virtual machine by
using the object variable objVM. Then paste your script into a multiple-virtual-machine wrap-
per. Your script will perform whatever task you’ve scripted for each virtual machine targeted
by the wrapper.

To get you started, we’re providing two wrappers. Listing 17-2 on the next page is a wrapper
that reads virtual machine names from a text file (C:\vmlist.txt by default, although you can
easily modify that).

492 Part IV: Scripting for the Enterprise

Listing 17-2 Target a List of Virtual Machines
Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTS = objFSO.OpenTextFile("C:\vmlist.txt")

Set objVS = CreateObject("VirtualServer.Application")

Do Until objTS.AtEndOfStream

 'Read the next VM name

 strVMName = objTS.ReadLine

 Set objVM = objVS.FindVirtualMachine(strVMName)

 'Insert your code here using objVM

Loop

objTS.Close

WScript.Echo "Complete"

Listing 17-3 targets every virtual machine configured in Virtual Server.

Listing 17-3 Target All Virtual Machines
Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objVS = CreateObject("VirtualServer.Application")

For Each objVM In objVS.VirtualMachines

 'insert your code here using objVM

Next

We’ll use Listing 17-2 at the end of this chapter, so you can see how inserting your own single-
virtual-machine code creates a multiple-virtual-machine script. We’ll use Listing 17-3 in List-
ing 17-4, again demonstrating how straightforward it is to script tasks against multiple virtual
machines.

Performing Virtual Machine Tasks

There are a number of virtual machine management tasks that you can perform by using a
script. We’re not going to include provisioning tasks, such as attaching a new hard disk, that
you’d usually only perform once; instead, we’re focusing on management tasks that you might
need to perform often

Several methods of the VirtualMachine object can be used to control the state of a virtual
machine. (These examples assume you’ve obtained a VirtualMachine object reference in the
variable objVM.)

objVM.Startup

objVM.TurnOff

objVM.Pause

objVM.Reset

objVM.Resume

objVM.Save

Chapter 17: Virtual Server 2005 Scripting 493

These methods perform tasks equivalent to the corresponding user interface controls:

■ The Startup method activates a virtual machine.

■ The Pause method temporarily suspends a virtual machine, but does not save its state.
The virtual machine is suspended, essentially; Virtual Server leaves the virtual machine
“turned on” but stops executing the virtual machine’s guest OS.

■ The Resume method brings a virtual machine out of Pause mode, returning it to the state
it was in when you paused it.

■ The TurnOff method cuts virtual power to the virtual machine, analogous to pulling the
plug from a physical computer.

■ The Reset method is similar to pressing the reset button on a physical computer, and it
has an effect similar to running TurnOff and then Startup in quick succession.

■ The Save method saves the current state of the virtual machine and then turns it off.

Note A virtual machine’s saved state includes both the current condition of its virtual disks,
as well as its entire memory, which is saved to a file on the host computer. The saved state rep-
resents the exact condition of a virtual machine at a point in time, similar to activating hiber-
nate mode on a physical computer.

A few additional methods allow you to work with a virtual machine’s saved state.

■ The DiscardSavedState method destroys a virtual machine’s saved state data, returning
the virtual machine to the condition it was in before the session in which the saved state
was created. For example, say you start a virtual machine, and then shut it down. Then
you start it a second time, save its state, and then discard the saved state. The virtual
machine would be in the same condition it was in after the first shutdown, which is the
last time changes were committed to disk.

■ The DiscardUndoDisks method is somewhat similar to DiscardSavedState. As we’ve
explained, a virtual machine can be configured to be undoable, meaning its original vir-
tual disks are untouched, and disk changes are written to a special undo file. Discarding
that undo file (or undo disk) reverts the virtual machine to the condition of the original
virtual disk. Alternately, you can use the MergeUndoDisks method to merge the undo
disk’s changes into the original virtual disk file, thus making the changes in the undo
disk permanent.

For example, suppose you have configured all your virtual machines to be undoable.
Each evening, you want to merge the undo disks, and make the day’s changes perma-
nent. (Therefore, at any time prior to merging the disks, you could revert the virtual
machine’s state to that of the previous evening’s merge.) To merge the undo disks with
every virtual machine on your Virtual Server computer, you could run the short script in
Listing 17-4 on the next page.

494 Part IV: Scripting for the Enterprise

Listing 17-4 Merge All Virtual Machine Undo Disks
Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objVS = CreateObject("VirtualServer.Application")

For Each objVM In objVS.VirtualMachines

 'insert your code here using objVM

 objVM.MergeUndoDisks

Next

You’ll notice that we used one of our wrapper scripts to accomplish this task.

The VirtualMachine object exposes a number of properties that can be useful in various man-
agement tasks.

■ AutoStartAtLaunch When set to TRUE, this property causes Virtual Server to automati-
cally start the virtual machine when Virtual Server itself starts (such as after a host com-
puter reboot).

■ AutoStartAtLaunchDelay This property specifies a number of seconds that Virtual
Server will wait to auto-start a virtual machine. This is useful because some virtual
machines depend on others (such as domain controllers) to function.

■ GuestOS This property returns a GuestOS object that represents the guest OS running
within a virtual machine. We’ll discuss this object in more detail later in this chapter.

■ Keyboard This property returns a Keyboard object, which represents the virtual
machine’s keyboard. We’ll discuss this property in more detail later in this chapter.

■ Memory This property allows you to examine or change the amount of memory, in
megabytes, assigned to the virtual machine. Note that you cannot change this property
unless the virtual machine is turned off.

■ Mouse This property returns a Mouse object, which represents the virtual machine’s
mouse. We’ll discuss this property in more detail later in this chapter.

■ State This property lists the current state of the virtual machine. This property is read-
only; you can’t change the state by directly modifying this property. This property’s pos-
sible values include the following:

■ 0: Invalid

■ 1: Off

■ 2: Saved

■ 3: Turning on

■ 4: Restoring

■ 5: Running

■ 6: Paused

■ 7: Saving

Chapter 17: Virtual Server 2005 Scripting 495

■ 8: Turning off

■ 9: Merging drives

■ 10: Deleting VM

■ Undoable When this property is set to TRUE, the virtual machine is set to undoable,
when set to FALSE, it is not.

■ UndoAction This property sets the action that Virtual Server should take when the vir-
tual machine’s guest OS is shut down as usual. This property’s possible values are:

■ 0 discards the undo drive (thus undoing any changes made to the virtual machine
since it started).

■ 1 keeps the undo drive (persisting any changes but reserving the ability to undo
them later).

■ 2 commits changes from the undo drive (merging the drives), making the changes
permanent.

Listing 17-5 is an example of using the VirtualMachine object properties to produce an inven-
tory list of virtual machines. Note that this only works if each virtual machine has a guest OS
installed and functional.

Listing 17-5 Inventory Virtual Machines
Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objVS = CreateObject("VirtualServer.Application")

For Each objVM In objVS.VirtualMachines

 If objVM.AutoStartAtLaunch Then

 strAuto = "Auto start"

 Else

 strAuto = "Manual start"

 End If

 strGuestOS = objVM.GuestOS.Name

 strDisks = objVM.HardDiskConnections.Count & " Disks"

 strNICs = objVM.NetworkAdapters.Count & " NICs"

 Select Case objVM.ShutdownActionOnQuit

 Case 0

 strAction = "Save state on quit"

 Case 1

 strAction = "Turn off on quit"

 Case 2

 strAction = "Shutdown on quit"

 End Select

 Select Case objVM.State

 Case 0

 strState = "Invalid"

 Case 1

 strState = "Off"

 Case 2

496 Part IV: Scripting for the Enterprise

 strState = "Saved"

 Case 3

 strState = "Turning on"

 Case 4

 strState = "Restoring"

 Case 5

 strState = "Running"

 Case 6

 strState = "Paused"

 Case 7

 strState = "Saving"

 Case 8

 strState = "Turning off"

 Case 9

 strState = "Merging"

 Case 10

 strState = "Deleting"

 End Select

 If objVM.Undoable Then

 strUndo = "Undoable"

 Else

 strUndo = "Not undoable"

 End If

 WScript.Echo objVM.Name & ": " & _

 strUndo & "," & _

 strState & "," & _

 strAction & "," & _

 strGuestOS & "," & _

 strDisks & "," & _

 strNICs & "," & _

 strAuto

Next

Here’s an example of this script’s output when running under CScript.exe.

WinXP: Undoable,Running,Shutdown on quit,Windows XP Professional,1 Disks,1 NICs,Auto start

Win2003: Undoable,Running,Shutdown on quit,Windows Server 2003,1 Disks,1 NICs,Auto start

Linux: Not undoable,Turned off,Shutdown on quit,Red Hat Linux,2 Disks,1 NICs,Manual start

Performing Virtual Disk Tasks

The HardDisk object represents a virtual disk and includes a few methods useful for manage-
ment, particularly periodic maintenance tasks.

■ Compact For dynamic (as opposed to fixed-size) disks, this method reduces the disk
file as much as possible, eliminating unused space.

■ Merge This method merges a virtual disk’s undo file with the parent file.

Chapter 17: Virtual Server 2005 Scripting 497

■ MergeTo This method merges an undo disk and its parent into a new, independent
virtual disk file. You must pass two arguments to this method indicating the new virtual
disk’s filename, and the type (fixed-size or dynamic) to be used. For example,
objDisk.MergeTo("C:\Newdisk.vmdk",0) will merge to a new dynamic disk (use 1 for
fixed-size).

All these methods return a Task object; you can check that object’s IsComplete method to see
when the operation is completed. For example:

Set objTask = objDisk.Compact

Do Until objTask.IsComplete

 WScript.Sleep 5000

Loop

Note We refer to things like undo disks as though they were separate disks, but they’re not.
Any given virtual disk—that is, an instance of the Virtual Server HardDisk object—consists of
one or more base files that contain the permanent portion of the disk. It can also include one
or more undo or differencing files, which are commonly referred to as undo disks. However, all
these files—base and undo—comprise the actual HardDisk object.

Performing Guest OS Tasks

The GuestOS object provides a few methods and properties that provide basic control over
the guest OS running within a virtual machine. This object is accessible through the GuestOS
property of a virtual machine. Note that some capabilities of the GuestOS object require that
the Virtual Server Additions software be installed on the guest OS. Properties include the fol-
lowing:

■ AdditionsVersion This property is the version of the installed Virtual Server Additions.
This can be Null if the Additions are not installed.

■ CanShutdown This property is set to TRUE if Virtual Server can trigger an ordinary
guest OS shutdown.

■ OSName This property is the name of the guest OS.

■ IsHeartBeating This property returns TRUE if the Additions installed in the guest
OS indicate that the guest OS is functioning. If the Additions are installed and IsHeart-
Beating is FALSE, the guest OS might have locked up or crashed.

Methods of the GuestOS object include the following:

■ InstallAdditions This method attempts to locate the ISO image (included with Virtual
Server) that contains the appropriate Virtual Server Additions software for the guest OS.
It attaches the ISO image to a DVD drive, and if the guest OS is a version of Windows, it
launches the Additions installer.

498 Part IV: Scripting for the Enterprise

■ ExecuteCommand We mention this method in case you run across it, and because its
name is so enticing and promising. In Virtual Server 2005, unfortunately, it doesn’t do
anything.

■ ShutDown This method triggers an ordinary shutdown in the guest OS. It requires that
the Additions be installed and running. It is only currently supported for Windows
guest OSs.

Performing Mouse and Keyboard Tasks

You can use a virtual machine’s Mouse and Keyboard objects (obtained through the virtual
machine’s Mouse and Keyboard properties, respectively) to automate sending keystrokes and
performing other manual tasks within the virtual machine. The Keyboard object includes sev-
eral methods.

■ PressKey This method simulates pressing a key within the virtual machine.

■ ReleaseKey This method simulates releasing a key within the virtual machine.

■ PressAndReleaseKey This method simulates pressing and releasing a key within the
virtual machine.

■ TypeAsciiText This method simulates typing plain text within the virtual machine.

■ TypeKeySequence This method simulates typing a series of keys within the virtual
machine.

For all but TypeAsciiText, you’ll need to provide an appropriate key identifier. Regular charac-
ters—letters, numbers, and punctuation—are identified as Key_A, replacing A with the appro-
priate character. Special keys are identified differently. For example, the F1 key is identified as
Key_F1. The Virtual Server Programmer’s Guide contains a complete reference of key identifi-
ers. To send the F1 keystroke to a virtual machine, where you have a reference to that virtual
machine in the objVM variable, you’d do something like this.

Set objKey = objVM.Keyboard

objKey.PressAndReleaseKey("Key_F1")

Similarly, the Mouse object includes a Click method, which simulates clicking a mouse button
inside the virtual machine. This method requires one argument, which indicates the mouse
button to click: 1 for left, 2 for right, and 3 for center or mouse wheel click. For example, obj-
Mouse.Click(1) simulates a left button click inside the virtual machine (assuming the variable
objMouse is referring to a virtual machine’s Mouse object).

Viewing Virtual Server Scripting in Action
We have a Virtual Server 2005 computer that’s running half a dozen virtual machines; each
virtual machine contains a different version of Windows. We use them to test scripts and
other projects. One of the virtual machines is a domain controller, on which we’ve configured

Chapter 17: Virtual Server 2005 Scripting 499

various computer accounts to use in our tests. We’ve configured each virtual machine to be
undoable, meaning that when we’re done testing, we can roll each virtual machine back to its
starting condition, ready for the next round of tests. Of course, because the virtual machines
are in a domain, we like to roll them all back as a unit—that way, we know they’re in a consis-
tent state of readiness for our next test. Rolling back multiple virtual machines manually is a
bit time-consuming, so we wrote a simple script to do it.

We start by opening a text file named TestVMs.txt. In this file, we’ve listed the name of each
test virtual machine. By using this list, we can avoid any other virtual machines that Virtual
Server might be running. (Once we accidentally turned off and rolled back a virtual machine
that a SQL Server developer was using—he got pretty mad.)

Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTS = objFSO.OpenTextFile("C:\TestVMs.txt")

Next, we instantiate the Virtual Server COM object.

Set objVS = CreateObject("VirtualServer.Application")

We use a loop to read through the text file until we reach its end.

Do Until objTS.AtEndOfStream

We read a virtual machine name into a string variable, and then ask Virtual Server to find that
virtual machine and return a VirtualMachine object.

'Read the next VM name

strVMName = objTS.ReadLine

Set objVM = objVS.FindVirtualMachine(strVMName)

Because we don’t care about the virtual machine’s contents at this point, we just turn it off.
This is the virtual equivalent of flipping the power switch, rather than doing a clean operating
system shutdown. Again, we’re rolling back the virtual machine, so any damage done by an
improper shutdown won’t be retained.

'Turn off the VM

Set objTask = objVM.TurnOff

The TurnOff method returns a Task object. Virtual Server uses Task objects to keep track
of tasks that might require some time to complete. We can’t roll back the virtual machine
until it’s completely turned off, which might take a second or two, so we’ll check the task’s
IsComplete property every five seconds or so. After the IsComplete property is TRUE, we’ll
move on.

Do Until objTask.IsComplete

 WScript.Sleep 5000

Loop

500 Part IV: Scripting for the Enterprise

Because we configured the virtual machine to be undoable, Virtual Server doesn’t touch the
virtual machine’s original hard disks (where we’ve installed Windows). Instead, changes to
the guest OS caused by our tests are written to a special undo disk. We always have the option
to commit the undo disk, thus making the changes to that point a permanent part of the vir-
tual machine. Instead, we’re discarding the undo disks, reverting the virtual machine back to
its original condition.

'Discard undo disks

objVM.DiscardUndoDisks

We then start the virtual machine again so that it’s ready for our next round of tests. This tech-
nique also returns a Task object, but we’re not capturing that in a variable. That’s because we
know the virtual machine will take a while to start, but we don’t care; we can move on to the
next virtual machine and let this one do whatever it needs to do.

'restart VM

objVM.Startup

Loop

Finally, we close the input text file and display a message indicating that the script is complete.

objTS.Close

WScript.Echo "Complete"

Listing 17-6 is the complete script.

Listing 17-6 Roll Back a List of Virtual Machines
Set objFSO = CreateObject("Scripting.FileSystemObject")

Set objTS = objFSO.OpenTextFile("C:\TestVMs.txt")

Set objVS = CreateObject("VirtualServer.Application")

Do Until objTS.AtEndOfStream

 'Read the next VM name

 strVMName = objTS.ReadLine

 Set objVM = objVS.FindVirtualMachine(strVMName)

 'Turn off the VM

 Set objTask = objVM.TurnOff

 Do Until objTask.IsComplete

 WScript.Sleep 5000

 Loop

 'Discard undo disks

 objVM.DiscardUndoDisks

 'restart VM

 objVM.Startup

Loop

objTS.Close

WScript.Echo "Complete"

Chapter 17: Virtual Server 2005 Scripting 501

This is a great example of a script that can save time for a Virtual Server administrator. For
example, we have one client who uses a script to routinely shut down—meaning a clean shut-
down of the operating system, not just turning off the virtual power—their virtual machines
every night. They then back up the virtual hard disk files to tape, and then restart the virtual
machines. This gives them a complete, point-in-time backup of the entire set of virtual ma-
chines, without having to install backup software or agents within the guest OSs.

Summary
Virtual Server 2005 scripting can help make Virtual Server management easier and more effec-
tive. Certainly, it can help automate mundane tasks, such as setting up new virtual machines
or rolling back virtual machines in a group. But beyond the specific applications to Virtual
Server, we’ve shown you a whole new area of scripting and hopefully helped you realize how
extensible scripting really is. Provided you can find documentation on them, the many, many
COM objects present on every Windows computer can provide a broad array of administra-
tive capabilities. Becoming comfortable scripting COM objects—such as the Virtual Server
API—is the cornerstone to becoming a more successful and flexible Windows administrative
scripter.

Part V
Appendix

In this part:

Appendix A: Advanced Script Editor Features .505

505

Appendix A

Advanced Script Editor Features

In this appendix:

Universal Features . 506

Keyboard Shortcuts . 507

Script Snippets . 508

Code Hinting and Completion. 509

Wizards . 510

Debugging . 513

Enterprise Features . 514

Security Features . 515

Script Deployment and Remote Scripting . 516

WSF and WSC Support . 518

Other Features . 518

Where to Get the Software . 519

An amateur carpenter can get by with a simple hammer, but a true professional uses a nail
gun—an advanced tool for advanced work. The same holds true for scripting: Although
Microsoft Notepad is fine for beginners, as an advanced scripter, you should be using a
commercial script editor that makes scripting easier and more efficient. We’ll introduce
you to several, and we’ll highlight the features we think are the most useful.

Most Microsoft Windows administrators start scripting in Notepad. It’s free, readily available
on almost any computer running any version of Windows, and easy to use. Unfortunately,
using Notepad to script is a bit like using scissors to trim a hedge—you can do it, but it cer-
tainly doesn’t do anything to make your job easier. Notepad lacks line numbering, which is
crucial in scripting because the error messages you get from VBScript will all reference the line
where the error occurred. Notepad also doesn’t format your scripts, or add indentations
within loops, properly capitalized keywords, and so forth. Of course, your scripts will run
without those fancy extras. VBScript is extremely forgiving in that regard. However, your
scripts will be harder to read, which means they’ll be harder to debug, and harder, in the long
term, to maintain.

That’s why we recommend that serious scripters—and because you’re reading a book on
advanced scripting, you qualify as “serious”—invest in a commercial scripting tool. That means
you’ll have to make a financial investment; but we think the investment is well worth it in

506 Part V: Appendix

terms of the time and effort you’ll save in creating, debugging, and maintaining your scripts
over the long term.

Note There are several free script editors that provide basic features. Enter VBScript Editor
in a search engine like Google or MSN, or visit a download site like Download.com, and see
what turns up.

Of course, all the fancy features in the world are useless if you don’t utilize them. The purpose
of this Appendix is to help you recognize which features are truly useful in Windows admin-
istrative scripting, and to give you an idea of how these features work and how they can help
you. You can train yourself to use these features in whatever tool you eventually purchase.
We’re going to focus on four commercial editors, each of which provides a variety of features
that are designed specifically for Windows administrative scripting.

The four commercial scripting applications we examine are PrimalScript, AdminScriptEditor,
OnScript, and VBSEdit. We don’t directly compare these editors and we don’t provide a com-
prehensive list of all their features. Instead, we point out some of the features they offer that
have helped us write better scripts faster. You should evaluate these and other tools on your
own to decide which ones best meet your needs.

Universal Features
There are a few features that any good commercial script editor should include. The first is
syntax color-coding, which means the editor colors VBScript keywords, variables, literals, and
other language elements. Typically, you can customize the coloring to suit your preferences or
visual requirements. Color-coding is often accompanied by case correction, which allows the
editor to change, for example, msgbox to MsgBox. VBScript, unlike languages such as JScript, is
not case-sensitive, but having everything properly cased does make your scripts a bit easier to
read and more professional-looking. That’s really the ultimate purpose of color-coding and
case correction: making your scripts easier to read. Ease of reading is a big deal when you’re
looking at a hundred lines of VBScript code and trying to find a bug. In fact, you’ll be sur-
prised at how a neatly formatted script can help make even basic debugging easier. You don’t
need to learn how to use the color-coding feature because the editors do it automatically.

Another automatic feature is indenting. This allows you to type your script without having to
worry much about the formatting. That way, when you begin a new construct—a Do…Loop
construct, for example—you simply press the Tab key inside the construct. That indents the
next line of code, like this.

Do Until objTS.AtAndOfStream

 strName = objTS.ReadLine

Subsequent lines of code are automatically indented to the same level. When you’re done with
the loop, just press Backspace, and type the loop’s closing statement. The result is something
like this.

Appendix A: Advanced Script Editor Features 507

Do Until objTS.AtAndOfStream

 strName = objTS.ReadLine

 If strName = "Server1" Then

 WScript.Echo "Skipping Server1"

 Else

 ConnectToServer(strName)

 End If

Loop

Each construct is nicely indented, allowing you to visually identify where each loop or other
construct begins and ends. This is tremendously useful in debugging scripts, and makes long-
term maintenance easier. Indenting like this is considered an industry best practice (and has
been for years, in fact), and automatic indenting in a script editor makes it much easier to fol-
low this best practice in your own scripts.

Keyboard Shortcuts
This is going to seem like a silly thing to point out, but keyboard shortcuts are incredibly
important, and surprisingly, not every script editor has a lot of them. Think about it: you cre-
ate scripts by typing, not by using the mouse. Therefore, the more time your hands spend on
the keyboard, the more productive you’re likely to be. We can probably type an average line of
script in three or four seconds. That’s about the amount of time it takes to reach for the mouse
and click a toolbar button. Pressing a keyboard shortcut to activate that toolbar button’s fea-
ture, however, takes probably less than a second, and that’s enough time to write an extra line
of code. Multiply that savings by the several dozen or so toolbar buttons you might click in the
course of writing a script, and you could be losing a substantial amount of time. Yes, you do
have to train yourself to remember and use keyboard shortcuts, but it’s worth the initial
investment in time.

As a technical professional, you’ve probably experienced some frustration over folks who don’t
use keyboard shortcuts. For example, how often have you stood behind a user with a technical
problem, and asked him or her to copy and paste a small amount of text? An inexperienced
user will grab the mouse, highlight the text (maybe taking one or two tries to do that), right-
click the text, and click Copy on the shortcut menu. Meanwhile, your fingers are twitching to
take over, highlight the text with the keyboard, and press Ctrl+C to copy it to the clipboard.
You’d be back to your other duties that much quicker. That is the sort of thing we’re talking
about when it comes to keyboard shortcuts in script editors. Find an editor that provides
shortcuts for as many of its key functions as possible, including running scripts, setting de-
bugging breakpoints, launching wizards, inserting code snippets, and so forth. Then train
yourself to use the keyboard shortcuts, and keep your hands off the mouse as much as
possible.

508 Part V: Appendix

Script Snippets
A year or so ago, PrimalScript was pretty much the only script editor to feature snippets, which
are short pieces of code that you can reuse in your scripts. Today, almost everyone includes
snippets, or something like them, in their editor. AdminScriptEditor from iTripoli calls them
ScriptBits, OnScript from XLnow simply has a code library, and VBSEdit from Adersoft has a
menu that provides access to snippets. We still like PrimalScript (from SAPIEN) best, though.
As shown in Figure A-1, PrimalScript displays a Snippets Browser pane on the right side of the
screen. You can browse through dozens of snippets (the company even sells add-on packs on
their Web site), and drag them directly into your script. Snippets can include fill-in areas
where you complete statements to customize the snippet for your script.

Figure A-1 Using snippets within PrimalScript

This is functionality that all the editors we’re discussing provide. The reason we like Primal-
Script’s snippets best, however, is that snippets are also accessible through a keyboard short-
cut. For example, if you need to create an ActiveX Data Objects (ADO) recordset, you can just
type createrecordset—the name of a snippet—and press Ctrl+J. The entire snippet—a dozen
lines of code, in this case—instantly appears in your script in place of the snippet’s name.

Why are snippets so useful? Think about how long it might take you to write the dozen or so
lines of code needed to, for example, open a recordset and enumerate through its records.
Two minutes? Maybe five? With snippets, you can accomplish that in a couple of seconds. The
trick is to train yourself to use these snippets, instead of writing code from scratch, whenever
possible. Extending your snippets library helps, too. For example, PrimalScript can turn any

Appendix A: Advanced Script Editor Features 509

section of code into a reusable snippet. Just select the code, right-click it, and click Save As
Snippet from the shortcut menu. That’s a really useful feature, because it essentially means
you never have to type the same code twice. Type it the first time, save it as a snippet, and use
the snippet from then on. Windows administrative scripts often need to open text files to read
names, or even enumerate objects in Active Directory. There’s no reason not to make that code
into a snippet, allowing you to easily reuse it whenever you need to.

Code Hinting and Completion
All four of the editors we’re discussing—PrimalScript, VBSEdit, AdminScriptEditor, and
OnScript—offer some form of code hinting and completion. Microsoft’s trade name for this
feature is Intellisense, and if you’ve ever seen a developer working in Microsoft Visual Studio,
you’ll recognize the feature immediately. As shown in Figure A-2, OnScript displays a menu of
options to complete the code you’re typing. You can usually press an action key—Spacebar,
Tab, and so forth—to accept the currently highlighted choice and complete your statement.

Figure A-2 Using code completion in OnScript

Code completion can often save you the time it would take to look in the documentation to
find out what method, property name, or object ProgID to use. With all your choices alphabet-
ically listed in a menu, you can just scroll down to the selection you want—using the Arrow
keys, of course, because reaching for the mouse wastes time—press the action key, and finish
your code.

Code hinting is a similar feature that serves the same purpose: avoiding the need to turn to the
documentation. Figure A-3 on the next page shows PrimalScript’s code hinting feature. A

510 Part V: Appendix

ScreenTip reminds you of the proper syntax for functions and statements—even the ones
you define yourself in your script. With this quick, unobtrusive reminder, you can figure out
which argument comes first in, for example, the InStr function—something we always have a
tough time remembering—without wasting time looking up the function’s syntax in the
VBScript documentation.

Figure A-3 Using code hinting in PrimalScript

Wizards
Wizards are small, built-in tools that a script editor provides to make scripting easier. A great
example of a wizard is AdminScriptEditor’s MessageBox Wizard. The VBScript MsgBox state-
ment (or function, depending on how you’re using it) has a lot of flexibility. You can specify a
variety of button combinations, icons, and so forth. Unfortunately, remembering all the avail-
able options, and the values that select them, is tough, and often requires a quick look at the
VBScript documentation. The MessageBox Wizard provides you with an easy graphical user
interface for selecting the options you want, as shown in Figure A-4. When you’re done, the
correct VBScript code is inserted into your script for you.

Other wizards can perform more complicated tasks. For example, VBSEdit, AdminScript
Editor, and PrimalScript all include a Windows Management Instrumentation (WMI)
Wizard, which produces short WMI scripts for you. Figure A-5 shows PrimalScript’s wizard,
which allows you to browse the WMI classes on your computer, as well as the classes on any
remote computer to which you have permissions.

Appendix A: Advanced Script Editor Features 511

Figure A-4 Using the MessageBox Wizard in AdminScriptEditor

Figure A-5 Viewing the WMI Wizard in PrimalScript

More Info Chapter 12, “Better Scripting with WMI Tools,” covers the PrimalScript WMI Wizard
in more detail, and provides suggestions for using it to write more complex scripts in less time.

The wizard-generated script can be inserted in your own script, and then adjusted to meet
your needs. Using a wizard like this is often much easier than manually creating the code to
query certain WMI information, and the wizard also provides a convenient way to browse the
available WMI classes. Some WMI wizards, such as the one in AdminScriptEditor, also display
sample data from the WMI class you select, helping you to confirm that the class is correct.

512 Part V: Appendix

Sometimes, wizards go beyond writing simple sample scripts and actually extend the func-
tionality of your script. A good example is PrimalScript’s ADSI Wizard (only available in the
Professional Edition). Figure A-6 shows the wizard in action. There’s no preview—as wizards
often provide—of the script the wizard will generate. What the wizard is doing, however, is
much more complex than just creating some sample code. It’s creating entirely new object
classes within your script. Each class represents an Active Directory object, such as a user or
computer.

Figure A-6 Running the PrimalScript ADSI Wizard

After this is added to your script, you’ll be able to create new instances of these object classes
to represent ADSI users, computers, or whatever. As shown in Figure A-7, PrimalScript can
provide full code completion and hinting for these objects, making ADSI scripting much more
straightforward.

Figure A-7 Testing code completion for the new ADSI-related objects

Appendix A: Advanced Script Editor Features 513

The lesson here is that code wizards can save time, make scripting easier, and provide func-
tionality that might otherwise take you hours or even days to write on your own. Learning to
use these wizards can save you a lot of time, especially in complex scripting tasks, even if you
have to adjust their output a bit to suit your precise needs.

Tip Some editors—such as AdminScriptEditor and PrimalScript—are extensible, meaning
that you can add wizards into the product. SAPIEN, for example, publishes the specification
needed to write your own wizards in almost any COM-compatible language (including Visual
Basic). The manufacturers of these editors sometimes release add-in packages of additional
wizards, adding functionality and value to their tool.

The nice thing about wizards is that they give you the scripting capabilities of a more experi-
ence developer—namely, the person or people who wrote the wizard. As long as you know the
basics and keep things simple, wizards can often write two-thirds or more of the scripts you
need to automate Windows administration.

Debugging
Debugging is an unfortunate fact of life when you’re writing scripts. Unless you’re writing the
simplest possible script with just a few lines of code, you’re likely to run into a bug at some
point. Three of the editors we’re discussing—OnScript, AdminScriptEditor, and VBSEdit—
provide integration with the Microsoft Script Debugger, which is a free download at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sdbug/Html/sdbug_1.asp

Tip This link, like most of the links referenced in this book, is included on the companion CD.
Click Introducing Microsoft Script Debugger.

This integration allows you to set debugging breakpoints within the editor’s code window,
and then launch the script debugger (often by using a toolbar button or menu command)
from within the editor. If you’re using one of these editors, take the time to download and
install the Microsoft Script Debugger so that you’ll have some basic debugging functionality
available to you.

More Info A full discussion of debugging techniques and concepts is beyond the scope of
this book. If you’d like to learn more about VBScript debugging, we suggest viewing the
VBScript Debugging training video, available at these two Web sites:

www.ScriptingAnswers.com

www.ScriptingOutpost.com

514 Part V: Appendix

PrimalScript Standard Edition includes this same style of integration, but PrimalScript Profes-
sional Edition includes a customized debugger named PrimalScope. PrimalScope is much
more functional than the Windows Script Debugger, and makes it a lot easier to get inside
your scripts as they’re running to see what they’re doing—a key to successful, efficient debug-
ging. Like the other editors, PrimalScript allows you to set breakpoints—places where script
execution will pause so that you can examine the script’s operation to that point—within the
code window. When you begin debugging, though, everything takes place within the Primal-
Script window, as shown in Figure A-8.

Figure A-8 Debugging in PrimalScript Professional

The lower-left pane displays all the current variable and object property values, so you can see
at a glance which values your script is using in loops and logical comparisons. On the right, an
expressions evaluator displays the current result of any expression. You can highlight even
complex expressions in your script and drag them into the evaluator. PrimalScript will contin-
ually update the result of the expression as your script executes so you can see the values that
your script is producing and using. Pressing F11 advances your script by one line of code,
enabling you to step through the script one line at a time, examining the script’s values after
each line of code executes. Using these tools, you can quickly see where your script is produc-
ing values you didn’t expect, taking improper actions, and so forth. This is the fastest way to
find and eliminate bugs.

Enterprise Features
Scripting is often seen as a rogue operation, and is something that many information technol-
ogy managers don’t like. Although scripting has obvious benefits to an administrator, com-
pany managers often worry that the company will become dependent on the scripts, and that
when the administrator leaves, these scripts will create a maintenance nightmare.

Appendix A: Advanced Script Editor Features 515

One way to help alleviate this fear is through the use of enterprise best practices for software
development; that is, by treating scripts as though they are a regular, full-size software-devel-
opment project. We’ve already discussed some of these best practices, such as proper code
formatting. Another best practice is the use of source-control software, such as Microsoft
Visual SourceSafe, Borland StarTeam, and so forth. This software enables you to check in
scripts, keeping them in a central repository that can be backed up and treated as an asset of
the company. When you need to modify a script, you check it out, make your modifications,
and check in the modified version. Every version you check in is retained, so that past ver-
sions can be easily retrieved, compared to other versions, and so forth. Although we’re not
aware of any script editors that include source-control software, PrimalScript provides a
means for integrating with source-control software that you’ve acquired separately. (Almost
any company that has internal software developers will already have a source control solution
of some kind.) PrimalScript provides a source-control toolbar through which you can access
the source-control software, and check scripts in and out. Figure A-9 shows the Checkin
File(s) dialog box, where you can enter a comment about the version of a script you’re
checking in.

Figure A-9 Checking in scripts through PrimalScript

Although using source control won’t alleviate every potential objection to administrative
scripting, it will show that you’re serious about using scripting as a tool for achieving your
organization’s goals more efficiently. Source control also provides a valuable backup and
version-control resource as your library of scripts grows. Accessing source control through
your scripting environment makes it more convenient, and that means you’re more likely to
use the source-control system.

Security Features
In Chapter 2, “Script Security,” we discussed how script security is a concern for most busi-
nesses, and how Windows Script Host (WSH) can be configured to have a TrustPolicy that
makes scripting safer. We believe that a properly secured scripting environment is a must for
any environment, and we appreciate that some scripting-related tools are adopting that same
belief. Of the four editors we’re looking at in this Appendix, only PrimalScript provides full
integration with WSH TrustPolicy. Figure A-10 shows PrimalScript’s Options dialog box, and

516 Part V: Appendix

you can see that there’s an entire section devoted to security. You can specify the name of a
code-signing certificate, which enables PrimalScript to digitally sign scripts on demand, or
automatically sign scripts each time you save them. Because WSH TrustPolicy relies on digital
signatures to identify trusted scripts, the ability to easily and automatically sign scripts is a
crucial part of a more secure scripting environment.

Figure A-10 Configuring PrimalScript’s WSH security integration options

In the Security Setting drop-down list, you can select the WSH TrustPolicy level you want,
potentially allowing you to override a domain-wide TrustPolicy configuration so that you can
test scripts without interference from the TrustPolicy restrictions.

Script Deployment and Remote Scripting
Sometimes the best way to run a particular script is to run the script directly on one or more
remote computers. We discussed remote scripting in Chapter 6, “Remote Scripting,” but often
the WshController object doesn’t provide sufficient control or feedback for a particular situa-
tion. That’s when you can turn to your scripting tools to provide deployment and remote
scripting capabilities that are superior to the capabilities built into WSH.

Both AdminScriptEditor and PrimalScript provide script packaging capabilities. Admin-
ScriptEditor’s is called the Script Packager, and PrimalScript’s is called ESP (Evolved Script
Packager). Both tools essentially bundle a VBScript file into a standalone executable and allow
you to apply alternate security credentials so that the executable can be run by a user who
doesn’t necessarily have permission to perform the tasks that the script performs. Figure A-11
shows PrimalScript’s packager, which allows you to specify a custom icon for the final exe-
cutable, and also allows you to include multiple script files, data files, and even COM com-
ponents in the package. The package will automatically unpack the data files and COM
components, register the COM components, and then execute your scripts sequentially or in
parallel (you decide which). It can even remove the data files after your scripts have finished

Appendix A: Advanced Script Editor Features 517

executing. As part of PrimalScript’s focus on scripting security, scripts in the package can be
digitally signed, making them compatible with WSH TrustPolicy.

Figure A-11 Packaging scripts using PrimalScript’s ESP

Packaging scripts in this fashion makes it easier to deploy them as standalone tools to less
technically proficient users, or even to deploy them as applications by using Group Policy
objects or other software-deployment mechanisms.

Another way to deploy your scripts to remote computers is through remote scripting, very
much along the lines of what WshController does. Both PrimalScript (Enterprise Edition) and
OnScript (Network Edition) include remote scripting capabilities. PrimalScript’s feature is
called the Remote Script Execution Engine (RSEE); OnScript simply incorporates the feature
as part of its feature set. OnScript’s remote scripting requires that you install a small COM
component on each remote computer on which you want to manage and execute remote
scripts. The product then allows you to connect to any computer containing that COM com-
ponent and maintain a repository of scripts on that remote computer. Any remote script can
be executed, which causes the COM component to run the script locally on the remote com-
puter. Basic status information is fed back to your copy of OnScript so that you can see when
the script concludes. PrimalScript’s RSEE is somewhat more robust, providing the ability to
deploy a script to multiple computers, rather than executing remote scripts one at a time.

Remote scripting is a great way to spread the processing load of a major scripting effort. For
example, rather than writing one script that connects to each of a thousand computers to
make some configuration change, you can deploy the script directly to each of those comput-
ers, allowing the script to execute in parallel. It’s a great time-saver, and having the ability built
into your scripting tool makes it more convenient and easier to manage.

518 Part V: Appendix

WSF and WSC Support
In Chapters 3 and 4, we showed you how to use Windows Script Files (WSFs) and Windows
Script Components (WSCs) to package your script into more modular, standalone files. Both
the WSF and WSC format require fairly complex XML formatting, and although most script-
ing tools and editors can display the files, they don’t provide any means of simplifying the for-
matting. PrimalScript is an exception. It provides a graphical user interface that enables you to
configure various options supported by the WSF or WSC format, while handling the complex
XML formatting entirely behind the scenes. We like these features because they make it much
more practical to use these powerful script file formats. Having to manually format the XML
is intimidating and error prone, and often results in administrators simply abandoning the
formats and doing without their valuable benefits.

More Info For more information about the WSF format, see Chapter 3, “Windows Script
Files.” The WSC format is covered in Chapter 4, “Windows Script Components.”

Other Features
Commercial script editors can provide additional features that make scripting more efficient.
Some of our favorite features include:

■ The ability to capture output from WSH, displaying script output within the editor itself.

■ Options for adding other tools, such as tools for working with databases, other scripting
languages, and so forth. Some editors allow you to integrate existing tools that are
already installed on your computer, whereas others sell or provide add-in tools that
accomplish specific tasks.

■ Integration of documentation, such as the downloadable VBScript documentation or
Microsoft MSDN Library. The best form of integration lets you highlight a language key-
word, press a hotkey such as F1, and then view help for that keyword in a pop-up box.

■ Browsers that enable you to view the properties and methods of COM objects installed
on your computer. These browsers often make it easier to locate and work with COM
objects.

■ Code folding, which is a feature that defines regions in your script. These regions can rep-
resent a subroutine or function, or regions of script that you define. Regions can then be
collapsed (or folded) and expanded, helping you hide portions of the script so that you
can focus on other portions.

■ Block formatting features, such as the ability to indent or unindent blocks of code, turn
blocks of code into comments, or turn blocks of comments into active code. These
features help save time when you’re writing longer, complex scripts.

Appendix A: Advanced Script Editor Features 519

The list goes on and on. As you use the editor you’ve selected, you’ll find yourself becoming
more and more efficient and effective, and your scripting efforts will require less time and pro-
duce even better results.

Where to Get the Software
You can obtain evaluation copies of the four products we’ve discussed, and of course, the
products themselves, from their manufacturers’ Web sites:

■ AdminScriptEditor is available from the following two Web sites:

http://www.itripoli.com

http://www.adminscripteditor.com

We worked with version 2.2 for this book.

■ OnScript is available at

http://www.onscript.com

We worked with version 1.0 for this book.

■ PrimalScript is available at

http://www.sapien.com

http://www.primalscript.com

We worked with version 4 for this book, focusing primarily on the Professional Edition
(although we did mention a couple of features that are only in the Enterprise Edition).

■ VBSEdit is available at

http://www.vbsedit.com

We worked with version 3 for this book.

We want to once again acknowledge that there are a huge number of other editors out there.
Some are free, and others require you to purchase them. The reason we’ve focused on these
four products is that they provide the most functionality specific to Windows administrative
scripting. Many other products are just fancy text editors, perhaps providing line number-
ing and a few other useful features. Others are specifically designed for Web development,
although they might provide a few other VBScript development features. Although all these
tools are certainly useful, they’re nowhere near as useful as an editor that’s specifically de-
signed to make Windows administrative scripting easier. Of course, the most powerful and
feature-filled tools cost more—in fact, our experience is that you really do get what you pay for
in terms of functionality. Almost every professional in any trade will tell you that spending a
bit to get an excellent set of tools will pay off in the time and effort it saves you.

520 Part V: Appendix

We’re often asked which scripting editor we prefer and recommend. We’ve tried all the ones
we cover in this Appendix, and we both use PrimalScript as our daily editor. However, we can’t
say what’s best for you. That’s why we’re so glad the manufacturers of these products offer
trial versions, most in the 30-day to 45-day range, and most offering full product functionality
for the duration of the trial. That gives you the opportunity to download each one, test it for a
month or so, and decide which one has the features that work best for you. Of course, as we
said at the beginning of this Appendix, be sure you’re training yourself to use those features, so
that you’re getting the full benefit of whatever tool you eventually decide to use.

521

Index

Symbols
3-D scrollbars, displaying in HTAs, 142

A
aborting scripts, 20, 292
AbsolutePage property (ADO Recordset

object), 249
AbsolutePosition property (ADO

Recordset object), 249
Access. See Microsoft Access
accounts. See user accounts
ACEs (access control entries), 241
activating ODBC DSNs, 184
Active Directory

alternate credentials, connecting
through, 53

configuring with WMI classes,
373–374

connecting to, shortcut for, 255
as database, 248–251
Exchange information, viewing, 428
mappings, list of, 248
objects, retrieving LDAP path to, 254
querying, and arrays, 428
querying default configuration

naming context, 427
querying Exchange mailbox stores,

430
querying Exchange storage groups,

428–429
querying, with homeMDBBL

attribute, 431–432
Schema snap-in, registering, 251
searching, 257
trust provider, modifying, 373–374

Active Directory Browser (ADSVW),
217–218

connecting to domain root, 218
graphical interface, 218
navigating, 218

Active Directory Services Interface
(ADSI). See ADSI (Active Directory
Services Interface)

ActiveConnection property (ADO
Recordset object), 249

ActiveX, 96. See also COM objects
ActiveX Data Objects (ADO). See ADO

(ActiveX Data Objects)
Add method (Dictionary object), 23
AddAsString method

(SwBemPrivilegeSet object), 275

AdditionsVersion property (GuestOS
object), 497

AddPrinterDriver method, 384
administrator password, changing with

script, 26
AdminScriptEditor MessageBox Wizard,

510
AdminScriptEditor WMI Wizard, 349,

350
ADO (ActiveX Data Objects), 179–180

advantages of, 180
alternate credentials, connecting

with, 247
closing connection, 255
Command objects. See Command

objects (ADO)
connecting to ADSI with, 247
Connection objects, 181–182
connection strings. See connection

strings
data sources. See specific data sources
documentation, 191
flexibility of, 180
large result sets and, 245
ODBC DSN connections, 182–184
pages, 245
queries, filtering with string variables,

258
Recordset objects. See Recordset

objects (ADO)
testing for group membership, in

conjunction with ADSI, 256–259
ADSCmd, 220–225
ADSI (Active Directory Services

Interface), 24–29
ADO Recordset object properties in,

249–251
alternate credentials for, 53
case sensitivity of, 25
closing connections, 253
command-line tools, 220–225
ConnectionString property, vs.

Provider property, 247
data return limits, 227–229
directory service types. See LDAP

provider; WinNT provider
paging, enabling automatic, 250
permissions and, 167
providers. See LDAP provider; WinNT

provider
queries. See ADSI queries

recordsets, methods supported in,
250–251

Scriptomatic. See ADSI Scriptomatic
setting changes, 26

ADSI Provider, 246–247
ADSI queries

Attributes portion of syntax, 252
filter portion of syntax, 251–252
filtering, 251–252, 253
making changes with, 254–256
remote, 163
specifying scope, 253
syntax, proprietary, 251–254

ADSI Scriptomatic, 207–209. See also
Scriptomatic

creating user account with, 207–208
downloading, 209
reusing code from, 209

ADSI Software Development Kit (SDK),
217. See also Active Directory
Browser (ADSVW); ADSCmd;
ADSIDump

ADSIDump, 222–225
ADSVW. See Active Directory Browser

(ADSVW)
Alert object, 470–471
Alert property (ScriptContext object),

465
alerts, creating in MOM (Microsoft

Operations Manager), 481
aliases, WMIC, 326–328

determining which properties
returned by get command, 333

target classes, 329–331
viewing information on, 331

alternate credentials, 52
with Active Directory Services

Interface (ADSI), 53
with ADO, 247
CIM Studio and, 344–345
remote scripting with, 165
with RunAs command, 52
unavailable for local system, 344
with Windows Management

Instrumentation (WMI), 54
with Windows Task Scheduler, 53
with WMI Event Registration, 301
with WMIC (WMI Command Line),

332
applicationname attribute (HTAs), 141
applications, authorizing in Windows

Firewall, 361

522

applications, HTML. See HTAs (HTML
applications)

arguments, validating, 78
Array function, 22
arrays, 22

associative, 23. See also Dictionary
objects

creating, 22
cycling through elements in, 22
and Dictionary objects, in same

script, 24
numbering elements in, 22
processing queried properties as, 428
setting variables for data in, 29
upper limit, displaying, 22
when to use, 23–24

association queries, 268–272
associations, 267–268. See also

references queries
associative arrays, 23. See also

Dictionary objects
associator classes (WMI), 267. See also

association queries
asynchronous notification queries, 294,

302
authentication

for asynchronous queries, setting, 302
enabling, in WBEMTest, 342
for individual packets, 274
Kerberos, 342

authentication levels, setting, 274
AuthenticationLevel property

(SWBemSecurity object), 274
AuthorizedApplications object

(Windows Firewall), 362
authorizing applications in Windows

Firewall, 361
Automatic Updates, 385

COM objects, instantiating, 388
configuring, 385
login scripts for, 386–387
remote inventory, displaying,

385–386
settings, deploying, 385

AutoStartAtLaunch property
(VirtualMachine object), 494

AutoStartAtLaunchDelay property
(VirtualMachine object), 494

AvailableSystemCapacity method
(VirtualServer.Application object),
487

B
back-end databases, 196
backing up

GPOs, 412
IIS metabase, 378–379

backslashes in WMI, 276
Backup method (gpmGPO object), 412
batch files incorporating WMIC,

337–341
bindings, 376
bit flags, 277
blocking, 291–293
BOF property (ADO Recordset object),

249
Bookmark property (ADO Recordset

object), 190, 249
Boolean parameters, 77
Boolean types, 66
border attribute (HTAs), 141
borderstyle attribute (HTAs), 142
building HTAs (HTML applications),

132
buttons, 149–150

C
cache, DNS, clearing, 366
CacheSize property (ADO Recordset

object), 249
callbacks, 295
Cancel event (WMI), 295
CanShutdown property (GuestOS

object), 497
caption attribute (HTAs), 142
CAs (trusted certification authorities).

See trusted certification authorities
(CAs)

catalogs, global (GCs), 228
<CDATA> tag (XML), 58
CDOEXM objects, creating, 437
certificates. See digital certificates
certification authorities (CAs), 44

checking, 45
commercial vs. internal, 49
removing from trusted list, 45
trusted. See trusted certification

authorities (CAs)
check boxes

checked attribute, 150
in HTAs, 150
value, examining, 150

checked attribute (HTML check boxes),
150

checking errors, 10–11
checksums, 43
CIM Studio

alternate credentials with, 344–345
class information, displaying, 346
class relationships, viewing, 346
classes, returning all instances of, 346
connection properties, specifying,

344–345
namespace, connecting to, 343–344

remote connections in, 344
searching for WMI classes in, 345
Windows XP Service Pack 2 and, 343

class ID, setting for collection objects,
477

ClassDefsOnly keyword
(ASSOCIATORS OF query), 272

classes
in CIM Studio, displaying information

on, 346
in CIM Studio, returning all instances

of, 346
for DNS record types, 369
IIS, 375
in IIS namespace, 374–375
relationships, viewing in CIM Studio,

346
classes, WMI. See also specific classes

checking operating system support
for, 355–356

configuring Active Directory with,
373–374

displaying in Scriptomatic, 320
in Exchange, 432
omitted by Windows Server 2003,

356
operating systems supported on,

viewing by individual class, 356
remote, viewing, 324
searching for, in CIM Studio, 345

classid, 96
classid property (XML registration tag),

97
clauses, SQL. See specific clauses
clearing DNS cache, 365–366
clearing errors before creating error

logs, 10
Click method (Mouse object), 498
clicking mouse button in virtual

machine, 498
clipboard, saving WMIC output to, 334
ClusterState property

(ExchangeServerState class), 435
code completion in script editors,

509–510
code folding, 518
code hinting in script editors, 226,

509–510
code, reusing. See also Windows Script

Components (WSCs)
code signing, 49–50

checksums, 43
public key encryption and, 43
with SAPIEN PrimalScript. See

SAPIEN PrimalScript
collection objects

for all files in folder, 20
class ID, setting, 477

applications, HTML

523

collections, 478
columns, database, 180
COM objects, 95–96. See also ActiveX

code as. See Windows Script
Components (WSCs)

methods, 96
command-line string, incorporating in

IIS scripts, 380
command-line utilities, 64
Command objects (ADO), 191–192

creating, 191–192
data field length, specifying, 193
opening Recordset objects with, 192
parameters, adding, 192
parameters, data types for, 193
required properties, 192
setting up, 252
stored procedures and, 192

command window
accessing WMI with. See WMIC

(WMI Command Line)
saving WMIC output to, 334
writing script results to, 21

commands
executing, 6
parsing output of, 6
waiting for finish before executing

script, 6
<comment> tag (XML), 59, 77, 99
comments

converting into Windows Script File
scripts, 77

converting into XML <description>
tag, 77

in DSNs (Data Source Names), 184
in Windows Script Components

(WSCs), 99
in Windows Script Files (WSFs), 59

commercial certification authorities
(CAs), 49

Compact method (HardDisk object),
496

compacting dynamic disks, 496
<component> tag (XML), 97
connecting to Active Directory, 255
connecting to ADSI, 247
connecting to databases, 181–182
connecting to domains, 209, 221–222
connecting to Exchange mailbox stores,

443
connecting to global catalogs, 228
connecting to namespaces

in CIM Studio, 343–344
in Exchange, 433
in IIS, 375
with Scriptomatic, 321
in WBEMTest, 341

in WMI Event Registration, 301
with WMIC (WMI Command Line),

326
connecting to remote systems, 26

with alternate credentials, 33. See also
alternate credentials;
SWbemLocator object

with distinguished object names, 27
pinging computers before, 357
specific object in, 26
with WMIC (WMI Command Line),

332
connecting to Server service, 230
connecting to users, 240
Connection objects (ADO), 181–182
connection strings, 181

ADO and, 246–247
italicized elements in, 185
to Microsoft Access, 185
to Microsoft Excel, 185
passwords in, avoiding, 185
placeholders in, 185
providers, 246
to SQL Server, 185
text files and, 185, 195

ConnectionString property (ADSI), 247
connectivity

permission, 163
remote scripting and, 162–165

constants, 5
GPMC (Group Policy Management

Console), 397–403
consumers, 286

defining, 300
registering filters with, 305
temporary vs. permanent, 286
in WMI Event Registration, 303

containers, 209
context, and remote scripting, 167–170
context menus in HTAs, turning off, 142
contextmenu attribute (HTAs), 142
controlling software execution. See

Software Restriction Policies (SRP)
Count method (Dictionary object), 23
Create method, 27
CreateAlert method (ScriptContext

object), 465
CreateDifferencingVirtualHardDisk

method (VirtualServer.Application
object), 486

CreateDiscoveryDat method
(ScriptContext object), 465

CreateDynamicVirtualHardDisk
method (VirtualServer.Application
object), 486

CreateEvent method (ScriptContext
object), 465

CreateFixedVirtualHardDisk method
(VirtualServer.Application object),
486

CreateFloppyDiskImage method
(VirtualServer.Application object),
486

CreateHostDriveVirtualHardDisk
method (VirtualServer.Application
object), 486

CreateParameter method (ADO
Command object), 192–193

CreatePerfData method (ScriptContext
object), 465

CreatePermission method, 410
CreateScript method (WshController

object), 172, 174
CreateTextFile method, 16–17
CreateTextFile parameter, 16–17
CreateVirtualMachine method

(VirtualServer.Application object),
486

CreateVirtualNetwork method
(VirtualServer.Application object),
486

cross-frame security, disabling, 146
CScript, 7, 21, 61
CSV XSL file, 335
CurrentProfile object (Windows

Firewall), 362
CurrentProfileType object (Windows

Firewall), 362
CursorLocation property (ADO

Recordset object), 249
CursorType property (ADO Recordset

object), 249
customizing launch permissions, 163

D
DACLs (discretionary access control

lists), 240
adding ACEs to, 241
retrieving, 278

data, organizing external. See arrays;
Dictionary objects

data return limits, 227–229
Data Source Names (DSNs). See DSNs

(Data Source Names), ODBC
data sources. See specific data sources
data types, common values for, 193
databases, 180

Access, as data sources, 196
Active Directory as, 248–251
adding rows to, 201–202
back-end, 196
columns, 180
connecting to, 181–182
querying, 186

databases

524

databases (continued)
retrieving all rows/columns from

table, 197
rows. See rows, database
scripting with connection string. See

connection strings
SQL Server, 196–197
stored procedures in, listing all, 194
tables. See tables, database

debugging
queries, 196, 197
in script editors, 513–514
scripts, 134, 473

decoding scripts, 42
defining

event handlers, for HTML events, 132
Windows Script Components

(WSCs), 101–102
Delete method (ADO Recordset object),

190
DELETE query (SQL), 201
DeleteVirtualMachine method

(VirtualServer.Application object),
486

DeleteVirtualNetwork method
(VirtualServer.Application object),
486

deleting
database tables, 201
Exchange mailbox stores, 445
Exchange mailboxes, 452
Exchange storage groups, 440–441
recordset rows, 190
virtual machine configurations, 486

delimiting
Access databases, 196
text files, 195

dependencies, service, 267
deployed scripts, 171. See also remote

scripting
deployment script, 171
Description property (Alert object), 471
description property (XML

<registration> tag), 98
<description> tag (XML), 60, 64, 77
dialog boxes, adding icons to, 14–15
Dictionary objects, 23–24

Add method, 23
and arrays, in same script, 24
Count method, 23
data storage pages. See keys,

dictionary
items, 23
keys. See keys, dictionary
referencing individual items in, 23
returning all items in, 23
storing data in, 23
when to use, 23–24

differencing disks, 486
digital certificates. See also code signing

certification authorities (CAs). See
certification authorities (CAs)

certification path, reviewing, 45
obtaining, 49
self-signed, 49
signing scripts with, 49
storage location, 49
trusted certification authorities (CAs).

See certification authorities (CAs)
digital signatures

example of, 50
Windows verification of, 43

directory service scripting interface. See
ADSI (Active Directory Services
Interface)

DiscardSavedState method
(VirtualMachine object), 493

DiscardUndoDisks method
(VirtualMachine object), 493

DisconnectObject method, 300
discovery scripts (Microsoft Operations

Manager), 476–478
DiscoveryCollection object, 477
DiscoveryData object, 476
discretionary access control lists

(DACLs). See DACLs (discretionary
access control lists)

disk quotas, 364–365
default limit, configuring, 365
retrieving for user, 364

DiskState property
(ExchangeServerState class), 435

dismounting Exchange mailbox stores,
443

displaying full user names, 9
distinguished names, 27

for Exchange routing groups,
returning, 435

returning for Exchange servers, 435
searching by, 429

distributing HTAs (HTML applications),
127

distribution lists, 211. See also group
accounts

<div> tag, 144
creating dynamic, 144–145
innerHTML property, 144

DLL files, registering, 96
DN property (ExchangeServerState

class), 435
DNS provider, 365–371

class prototype, returning, 370
namespace for, 366
querying, 370
records, creating, 369–370
where supported, 365

DNS records, listing all of single type,
368

DNS servers
clearing cache, 366
listing all records of single type, 368
performance statistics, accessing, 366
properties of, 367
record types, class names for, 369
root hints, accessing, 366

documenting named parameters, 65–66
DOM, 130–131
domain controllers

pending replication jobs, displaying
number of, 371

validating, 412–413
domain names, fully qualified (FQDNs),

403
domains

connecting to, 209
connecting to root with LDAP

provider, 221–222
listing all users in, 25
listing objects in, 222–225. See also

ADSCmd
trust relationships, displaying,

372–373
drives

mapped, building list of, 9
remote, gathering information on, 33

drop-down list boxes. See list boxes
DSNs (Data Source Names), ODBC, 184

creating, 182
DumpToFile method (varSet object),

476
DVD-ROM drives, adding to virtual

machines, 488
dynamic disks, 488, 496
dynamic link library (DLL) files, 96
dynamic messages, displaying in HTAs,

144–145
dynamic recordsets, 187–188

adding records with, 188
deleting current row, 190
error when opening, 188
modifying, 188

E
Echo method (ScriptContext object),

465
editing

registry keys, for TrustPolicy, 46–47
scripts, in MOM (Microsoft

Operations Manager), 466,
478–479

scripts, in SAPIEN PrimalScript, 351

debugging

525

EditMode property (ADO Recordset
object), 249

editors, 513. See script editors
Enabled object (Windows Firewall), 363
encoding scripts. See script encoding
enterprise features of script editors,

514–515
entities, database. See tables, database
enumerating dictionary keys, 23
EnumNetwork function, 9
EnumPrint function, 9
EOF property (ADO Recordset object),

186, 249
Err.Clear statement, 10
error checking, 10–11
error handling, 9–15

with FileSystemObject library, 22
for overwriting files, 20

error messages, items to display in, 10–11
Error property (WshRemote object),

172
event handlers

assigning to buttons, 149–150
defining, for HTML events, 132

event logs, 264–265
Event object, 471–472
Event property (ScriptContext object),

465
event sinks, 108, 294–300

canceling, 295, 300
creating, 294
creating message box until run time,

108–109
defining, 313
multiple, 297

<event> tag (XML), 98
EventNumber property (Event object),

472
events, 285

consumers. See consumers
correlating across multiple servers,

474–476
creating, in MOM (Microsoft

Operations Manager), 471–472
defining, for Windows Script

Components (WSCs), 103
filtering. See filtering; filters
firing, 98, 108
for HTML tags, 131
returning parameters with, 109
security privileges, adding, 293
timeout parameters, setting, 292
in VBScript, 173
viewing graphically, 314
viewing properties of, in WBEMTest,

290
in WMI, 285–286

EventSource property (Event object),
472

eventtriggers.exe, 286
EventType property (Event object), 472
Evolved Script Packager (SAPIEN

PrimalScript), 172
<example> tag (XML), 60, 64, 78
Excel, connection strings to, 185
Excel workbooks

column names, creating, 196
as data sources, 195–196

ExceptionsNotAllowed object
(Windows Firewall), 362

Exchange
determining if unreachable, 435
mailbox report, creating, 454
mailbox stores. See mailbox stores,

Exchange
mailboxes. See mailboxes, Exchange
master report, creating, 455
namespace, connecting to, 433
properties, viewing in Active

Directory, 428
public folder messages, calculating

total size of, 434
servers. See Exchange servers
storage groups, 428–429, 436–441
version information, viewing, 435
WMI classes, 432

Exchange 2003 Software Development
Kit (SDK), downloading, 426

Exchange servers
distinguished names, returning, 435
listing all in domain, 426
master report, creating, 455
NetBIOS names, returning, 435
routing group distinguished names,

returning, 435
status, viewing. See

ExchangeServerState class (WMI)
Exchange_PublicFolder class (WMI),

434
Exchange_Server class (WMI), 432–434
ExchangeServerState class (WMI), 435,

435–436
Exec method, 6, 7
ExecNotificationQuery method, 291–

292, 293
ExecNotificationQueryAsync method,

294. See also asynchronous
notification queries

Execute method (WshRemote object),
173

ExecuteCommand method (GuestOS
object), 498

executing
commands, 6

Nslookup command, with Exec
method, 7

scripts. See running scripts
execution permissions, 163, 165–167
exporting IIS metabase, 378–379
extended rights, 240
external data, organizing. See arrays;

Dictionary objects
EZ-AD Scriptomatic. See ADSI

Scriptomatic

F
feedback on progress, displaying, 21
fields, database. See columns, database
file permissions, 276–280. See also

permissions
files

closing, 21
logging information on, 20
overwriting, error handling for, 20
setting collection objects for all in

folder, 20
FileSystemObject library, 15, 15–22
FileSystemObject object, 163, 176
Filter property (ADO Recordset object),

190, 249
filtering

ADO queries, with string variables,
258

ADSI queries, 251–252
ADSI queries, with multiple criteria,

253
LDAP queries, 227
queries, by logfile, 293
SQL queries, 197–198, 198

filters, 287
Find method (ADO Recordset object),

190
finding GPO backups, 413
FindVirtualMachine method

(VirtualServer.Application object),
486

FindVirtualNetwork method
(VirtualServer.Application object),
486

FirewallEnable object (Windows
Firewall), 362

firewalls. See Windows Firewall
firing events, 98, 108
flags, checking status, 277
flat scrollbars in HTAs, displaying, 142
folders

setting collection objects for all files
in, 20

validating paths, 19
For...Each...Next loop, 20
FormatPercent function, 21

FormatPercent function

526

formatting WMIC (WMI Command
Line) output, 334–335

forward-only recordsets, 186
FQDNs (fully qualified domain names),

403
frames, HTML. See inline frames
FrontPage code, cleaning up, 147
full user names, displaying, 9
fully qualified domain names (FQDNs),

403
functions. See also specific functions

adding to HTAs, 151–152
calculating Windows Script

Component properties by, 106
internal names, specifying, 107
reusing, 63

G
GCs (global catalogs), connecting to,

228
GenerateReportToFile method (GPO

object), 411
GetConfigurationValue method

(VirtualServer.Application object),
487

GetDVDFiles method
(VirtualServer.Application object),
487

GetFloppyDiskFiles method
(VirtualServer.Application object),
487

GetFloppyDiskImageType method
(VirtualServer.Application object),
486

GetHardDisk method
(VirtualServer.Application object),
486

GetHardDiskFiles method
(VirtualServer.Application object),
487

GetOverride method (ScriptContext
object), 465

GetProfileByType object (Windows
Firewall), 362

GetScriptState method (ScriptContext
object), 465

GetSecurityInfo method (gpmGPO
object), 407

GetVirtualMachineFiles method
(VirtualServer.Application object),
487

GetVirtualNetworkFiles method
(VirtualServer.Application object),
487

global catalogs (GCs), connecting to,
228

GloballyOpenPorts object (Windows
Firewall), 362

gmpRSOP object parameters, 413–414
GPM object, instantiating, 396, 403
GPMC (Group Policy Management

Console)
constants, list of, 397–403
object model, 394–396
requirements for, 394
Resultant Set of Policies (RSOP),

413–414
Scope of Management (SOM),

405–406
scripting, 394, 396, 403–404

GPMConstants object, instantiating,
396, 403

gpmGPO object, 407
GPOs (Group Policy objects). See Group

Policy objects (GPOs)
graphical script applications. See HTAs

(HTML applications)
graphics in HTAs, 151
group accounts

creating, 211
setting type, 211

group membership, testing for with
ADO and ADSI, 256–259

Group Policy Management Console
(GPMC). See GPMC (Group Policy
Management Console)

Group Policy objects (GPOs)
backups, 412, 413
listing all, 403–404, 419
master document, generating, 414
permission objects, creating, 410
permissions, 407–410
preferences, displaying, 49
reports, 411
restores, scripting, 412–413
retrieving information on, 419
SOM links, retrieving, 419

GroupDN property
(ExchangeServerState class), 435

GuestOS object, 497–498
GuestOS property (VirtualMachine

object), 494
GUIDs, 97, 241

H
handling errors. See error handling
HardDisk object, 496–497
hardware on virtual machines, 485
head method, 123
<head> tag (HTML), 141
help information, adding to scripts,

77–78
hform XSL file, 335

hiding
Maximize button, in HTAs, 142
Minimize button, in HTAs, 142
scrollbars, in HTAs, 142
system properties, in WBEMTest, 343
windows, 6

HNetCfg library, 362–363
Hnetcfg.dll, 360
HNetCfg.FwMgr object, 359
Home Networking Configuration

library, 362–363
HTA Helpomatic, 140
HTA tag, 141
htable XSL file, 335
HTAs (HTML applications)

attributes, 141–143. See also specific
attributes

borders, defining, 141
building, 132
buttons, 149
check boxes, 150
context menu, turning off, 142
converting HTML into, 153
customizing appearance of, 126
debugging, 133, 134
default window state, specifying, 143
displaying dynamic messages in,

144–145
displaying in Windows taskbar, 143
distributing, 127
downloading from Internet, 126
external files, referencing in, 152
filename extension association, 126
frames in, 146
functions, adding, 151–152
goals, specifying, 134
graphics, adding, 151
HTA tag, 141
HTML and, 128
hyperlinks in, setting to open new

windows, 142
inner border, displaying, 142
interactive elements in, 129
limiting to single instance, 143
list boxes, populating, 148
maximize/minimize buttons, hiding,

142
modularity of, 138
output, displaying in frames, 146
radio buttons, 150
right-clicking, setting behavior when,

142
scrollbars, customizing, 142
security bypass feature, 126
security of, 128
sizing, 143–144
subroutines, adding, 151–152

formatting WMIC (WMI Command Line) output

527

system menu, displaying, 143
text selection in, allowing, 143
title bar, setting text in, 142
version number, setting, 143
vs. Web pages, 141
window icon, 127, 142

HTML
converting into HTA, 153
displaying script output in, 136
frames, 146
hierarchy in, 130–131
nested tags. See also DOM
rendering engine, 128
subroutines, naming, 132
tables, formatting WMIC output as,

335
tags. See tags, HTML
text boxes, 147
whitespace in, 129

HTML applications. See HTAs (HTML
applications)

HTML events, defining event handlers
for, 132

hyperlinks in HTAs, setting to open new
windows, 142

I
IcmpSettings object (Windows

Firewall), 362
icon attribute (HTAs), 142
icons for HTA windows, 127
id attribute (HTML tags), 131
id property (<object> tag), 62
id property (XML <component> tag), 97
id property (XML <resource> tag), 99
identity, and remote scripting, 165
<iframe> tag, 146
IFrames. See inline frames
IIS classes, displaying read/write

settings, 375
IIS (Internet Information Services 6.0),

374–380
administrative scripts, 379
command-line string, incorporating

in scripts, 380
configuring Web sites with, 377
connecting to namespace, 375
creating Web sites with, 375–378
metabase, backing up, 378–379
metabase path, retrieving, 377
namespace, 374
namespace, classes in, 374–375
virtual directory, querying, 374–376
XML configuration metabase, 374

IisWebVirtualDirSetting class (WMI),
377

 tag (HTML), 151

impersonation, specifying level of, 274
ImpersonationLevel property

(SwBemSecurity object), 274
indenting, done automatically by script

editors, 506–507
inline frames, 146
innerborder attribute (HTAs), 142
<input> tag (HTML), 129
InputBox function, 12. See also MsgBox

function
INSERT query (SQL), 201–202

column values, providing, 202
data type errors, 202

InstallAdditions method (GuestOS
object), 497

installed services, dependencies
between, 267

installing
printer drivers, 383–384
SNMP provider, for WMI, 356
WMIC (WMI Command Line), 325

InstancesOf method, 30
internal certification authorities (CAs),

49
Internet Explorer Document Object

Model (DOM), 130–131
Internet Explorer rendering engine, 128
Internet Information Services (IIS) 6.0.

See IIS (Internet Information
Services 6.0)

IpVersion object (Windows Firewall),
363

ISA operator (WQL), 287
IsAlert method (ScriptContext object),

465
IsEvent method (ScriptContext object),

465
IsHeartBeating property (GuestOS

object), 497
IsPerfData method (ScriptContext

object), 465
IsTargetAgentless property

(ScriptContext object), 465
IsTargetVirtualServer property

(ScriptContext object), 465
items, dictionary, returning all, 23
iTriopoli AdminScriptEditor, 172

J
<job> tag (XML), 59
jobs, in Windows Script Files (WSFs),

59
JOIN clause (SQL), 199–200
JScript, 37

K
Kerberos authentication, 342
Keyboard property (VirtualMachine

object), 494
keyboard shortcuts, 507, 508
keys, dictionary, 23
Keys method, 23
KiXtart, 38

L
language attribute (<script> tag), 62
lanmanserver service, 230
launch permissions, customizing, 163
launching programs with WshShell

object, 5
LDAP object path, retrieving, 254
LDAP provider, 25

case sensitivity of, 25
connecting to root domains with,

221–222
LDAP queries

from ADSIDump file, 225
filtering, 227
restricting, 227
testing, 222

Level property (Alert object), 470–471
libraries, FileSystemObject, 15–22
library scripts, referencing externally, 94
LIKE operator in WQL WHERE clauses,

265–267
limits on data returned. See data return

limits
list boxes

<option> tags, 148
populating, in HTAs, 148
scrolling, 148

LoadDriver security privilege, activating,
384

local user accounts, listing all, 261
LocalPolicy object (HNetCfg library),

362
LockType property (ADO Recordset

object), 249
log files, 20

filtering queries by, 293
for tracing, 473
validating, 19

logon scripts, remotely modifying user
profiles with, 170

looping scripts, 15–16, 315

M
mailbox stores, Exchange

connecting to, 443
creating, 443–445
creating mailboxes in, 447

mailbox stores, Exchange

528

mailbox stores, Exchange (continued)
deleting, 445
dismounting, 443
displaying property information on,

443
listing all, 430, 441–442
listing available, 449–450
mounting, 445
setting URL, 445

mailboxes, Exchange
creating, 447
deleting, 452
enumerating properties for, 452–454
moving, 450
querying multiple, 454

ManagementGroupName property
(ScriptContext object), 465

mapped drives, 9
mapped printers, 9
MarshalOptions property (ADO

Recordset object), 249
matching checksums, 43
Maximize button, hiding in HTAs, 142
maximizebutton attribute (HTAs), 142
maximum data returned limits. See data

return limits
MaxRecords property (ADO Recordset

object), 190, 249
Memory property (VirtualMachine

object), 494
MemoryState property

(ExchangeServerState class), 435
Merge method (HardDisk object), 496
MergeTo method (HardDisk object),

497
MergeUndoDisks method

(VirtualMachine object), 493
merging virtual machine undo disks,

493
message boxes, displaying. See MsgBox

function
Message property (Event object), 472
messages, user, 9
metabase, IIS

backing up, 378–379
path, retrieving, 377

methods. See also specific methods
in ADSI recordsets, 250–251
for COM objects, 96
in Windows Script Components

(WSCs), 102, 107
Microsoft Access

connection strings to, 185
creating queries with SQL JOIN

clause, 200
databases, 196. See also databases

Microsoft Excel, connection strings to,
185

Microsoft Excel workbooks
column names, creating, 196
as data sources, 195–196

Microsoft Exchange 2003. See Exchange
Microsoft FrontPage code, cleaning up,

147
Microsoft OLE DB Provider for

Microsoft Active Directory Service,
246–247

Microsoft Operations Manager (MOM).
See MOM (Microsoft Operations
Manager)

Microsoft Script Encoder, 42. See also
script encoding

Microsoft SQL Server. See SQL Server
Microsoft Virtual Server 2005. See

Virtual Server
Microsoft Windows Script Host. See

Windows Script Host (WSH)
MicrosoftDNS_Domain class (WMI),

366
MicrosoftDNS_RootHints class (WMI),

366
MicrosoftDNS_Server class (WMI), 366
MicrosoftDNS_Statistic class (WMI),

366
MicrosoftDNS_Zone class (WMI), 366
Microsoft_DomainTrustStatus class

(WMI), 373
Microsoft_LocalDomainInfo class

(WMI), 372
Minimize button, hiding in HTAs, 142
minimizebutton attribute (HTAs), 142
modularizing scripts, 140
MOM (Microsoft Operations Manager)

alerts, creating, 470–471, 481
computer attribute information,

returning, 476–478
debugging scripts with, 473
editing scripts in, 466
events, creating, 471–472
inserting code, 466
PerfData object, 468
performance data, creating, 468
performance graph, generating, 470
performance objects, creating, 482
ScriptContext scripting host. See

ScriptContext
scripting, 464, 466
scripts, 466–467, 473–479, 481
timed scripts, 474

monitoring events
filtering by logfile, 293
queries for. See notification queries

mounting Exchange mailbox stores, 445

Mouse property (VirtualMachine
object), 494

MoveFirst statement (ADO), 186
MoveLast statement (ADO), 186
MoveNext statement (ADO), 186
MovePrevious statement (ADO), 186
moving Exchange mailboxes, 450
MSAD_DomainController class (WMI),

372
MSAD_ReplNeighbor class (WMI), 372
MSAD_ReplPendingOp class (WMI),

371
MSDN Library, 355
MsgBox function, 13–15. See also

InputBox function
button options, 13, 14
dialog box icons, including, 14–15

Mshta.exe, 125–126, 126. See also HTAs
(HTML applications)

N
Name property (Alert object), 470–471
Name property (ExchangeServerState

class), 435
Name property (ScriptContext object),

465
named parameters, 65–67

documenting, 65–66
helpstring property, 65–66
name property, 65
quotation marks in, 65
required property, 66–67
type property, 66

<named> tag (XML), 61
properties, 65–67
syntax, 65

namespaces
connecting to. See connecting to

namespaces
for DNS providers, 366
IIS (Internet Information Services

6.0), 374–375
permissions, 166
WMI, connecting to, 30, 321

naming
Exchange storage groups, 439
functions, internal, 107
methods, in Windows Script

Components (WSCs), 107
subroutines, 132

navigable attribute (HTAs), 142
navigating Active Directory Browser

(ADSVW), 218
nested group membership, testing for

with ADO and ADSI, 256–259
nested HTML tags, 130. See also DOM

mailboxes, Exchange

529

NetBIOS names, returning from
Exchange servers, 435

network adapters, attaching to virtual
machines, 489

network ping commands, 356–359
Notepad, scripting in, 505
notification queries, 286–287

asynchronous, 294
creating in WBEMTest, 288–291
semisynchronous, 291–294

NotificationDisabled object (Windows
Firewall), 362

Nslookup command, 7

O
object allowed permission, 241
object model, Virtual Server, 486–487
<object> tag (XML), 61–62
objects

class information, retrieving, 211
consumers. See consumers
creating, 61–62, 78, 210–211
Dictionary. See Dictionary objects
distinguished names, 27, 429
GuestOS, 497–498
listing all in domain, 220–225
in organizational units (OUs),

viewing, 222
PerfData, 468
properties, retrieving, 211
remote scripting, 171
retrieving information on, 211
setting attributes, 27
SWbemLocator. See SWbemLocator

object
type libraries. See type libraries
Virtual Server, obtaining references to,

491
Winmgmts, 30–31
WshNetwork, 8
WshShell. See WshShell object

ODBC (Open Database Connectivity)
DSNs, creating, 182

OnCompleted event (WMI), 295
onLoad event (window object), sizing

HTAs with, 143–144
OnObjectPut event (WMI), 295
OnObjectReady event (WMI), 295
OnProgress event (WMI), 295
OnScript, 172, 517
Open Database Connectivity (ODBC)

DSNs, creating, 182
open firewall ports, listing, 359
Open method (ADO Recordset object),

187
opening text files, 15–16, 176
OpenTextFile method, 15–16, 16

option buttons. See radio buttons
<option> tag, 148
ORDER BY clause (SQL), 199

combined with TOP clause, 198
default sort order, 199

organizational units (OUs)
granting permissions to, 242–243
viewing objects in, 222

organizing external data. See arrays;
Dictionary objects

OSName property (GuestOS object),
497

overriding TrustPolicy per-user settings,
47

overwriting files, 16–17, 20
Owner property (Alert object), 471

P
<package> tag (XML), 59
packaging scripts, 516–517. See

Windows Script Files (WSFs)
packets, authenticating individually, 274
PageCount property (ADO Recordset

object), 250
PageSize property (ADO Recordset

object), 250
Parameters property (ScriptContext

object), 465
parameters, run-time. See run-time

parameters
password boxes (HTML), 147. See also

text boxes (HTML)
passwords

administrator, 26
in connection strings, avoiding, 185
for IIS metabase backup, 378
security, 26
specifying for users, 27

Pause method (VirtualMachine object),
493

pausing
print queues, 381
virtual machines, 493

percent complete, displaying, 21
PerfData object, 468
PerfData property (ScriptContext

object), 465
performance counters for MOM

(Microsoft Operations Manager),
468–470

performance statistics, accessing, 366
Perl, 37
permanent consumers, 286. See also

consumers
permissions. See also file permissions

for actions. See extended rights

ADSI (Active Directory Services
Interface) and, 167

configuring for remote scripting
access, 163–165

connectivity, 163
execution, 165–167
for GPOs, 407–410
launch, customizing, 163
on namespaces, 166
object allowed, 241
for organizational units (OUs),

242–243
remote scripting and, 163–165

ping commands, executing, 356–359
pinging computers before connecting to

remote systems, 357
<pkg> tag (XML), 97
policies, vs. preferences, 49
polling, 287–288
populating list boxes in HTAs, 148
Popup method

parameters, 5
WshShell object, 4–5

popups
dismissing automatically. See Popup

method
requiring button click for dismissal,

13
scripting. See Popup method

ports, opening in Windows Firewall,
361

preferences, vs. policies, 49
PressAndReleaseKey method (Keyboard

object), 498
PressKey method (Keyboard object),

498
preventing software from running. See

Software Restriction Policies (SRP)
PrimalScope, 514
PrimalScript. See SAPIEN PrimalScript
primary users, absence of in Windows,

168
print devices, retrieving capabilities, 382
print queues

canceling all jobs, 381–382
pausing, 381
redirecting, 383
resuming, 381

printer drivers, installing, 383–384
printer ports, modifying, 383
printers, listing mapped, 9
privileges

enabling, in WBEMTest, 341
enabling, in WMI, 275–276
security, list of, 275–276
user, 32

privileges

530

Privileges property (SwBemSecurity
object), 275–276

ProcessingRule property (ScriptContext
object), 465

Profile object (HNetCfg library), 362
progid, m95–96
progid property (<object> tag), 62
progid property (XML <registration>

tag), 97
programs, launching with WshShell

object, 5
progress feedback, displaying, 21
Provider property (ADSI), vs.

ConnectionString property, 247
provisioning, 488–489, 490
public folder messages, calculating total

size of, 434
public key encryption, 43
<public> tag (XML), 98
Python, 38

Q
queries

ADO, filtering with string variables,
258

ADSI. See ADSI queries
association, 268–272
asynchronous, authentication level

for, 302
debugging, 196, 197
for event notifications. See notification

queries
executing, in WBEMTest, 343
filtering by logfile, 293
LDAP, 222
limits on. See data return limits
multiple, 297
notification. See notification queries
references, 273
returning specific properties with,

262–263
Select, 31–32
SQL. See SQL queries
in string variables, 248
testing, 343. See also WBEMTest
verifying, 343. See also WBEMTest
in WBEMTest, executing, 343
Windows Management

Instrumentation (WMI). See WMI
queries

writing efficient, 263
querying

Active Directory, 427, 428, 431–432
databases, 186
DNS provider, 370
Exchange mailbox stores, in Active

Directory, 430

IIS virtual directory, 374–376
MSAD_DomainController class, 372

QueueState property
(ExchangeServerState class), 435

Quit method (ScriptContext object),
465

R
radio buttons, setting default selection,

150
RAWXML XSL file, 335
read/write privileges, assigning to

Windows Script Component
properties, 106

reading registry with WshShell object, 5
reading text files, 15–16
ReadLine method, 16
record query limits. See data return

limits
RecordCount property (ADO Recordset

object), 189, 250
records, database. See rows, database
records, DNS

creating, 370
listing all of single type, 368

Recordset objects (ADO), 185–186. See
also recordsets

Bookmark property, 190
Delete method, 190
EOF property, 186
Filter property, 190
Find method, 190
MaxRecords property, 190
opening with Command objects, 192
properties, in ADSI connections,

249–251
RecordCount property, 189
Sort property, 190
State property, 190
Supports method, 190

recordsets. See also Recordset objects
(ADO)

bookmarking records in, 190
checking capabilities of, 190
checking if empty, 189
checking if open, 190
closing, 187
creating from joined tables, with SQL

queries, 200
defined, 185
dynamic. See dynamic recordsets
extracting data from, 187
finding matching records in, 190
forward-only, 186
methods supported in, 250–251
pointer, moving, 186
static, 189

redirecting print jobs, 383
reference property (<object> tag), 62
references queries, 273
regions, defining, 518
registering

Active Directory Schema snap-in, 251
DLL files, 96
filters, with consumers, 305
Windows Script Components

(WSCs), 97–98, 121
WScript object, as bug fix, 174

RegisterVirtualMachine method
(VirtualServer.Application object),
486

RegisterVirtualNetwork method
(VirtualServer.Application object),
486

<registration> tag (XML), 97–98
registry

modifying, with remote scripting, 169
reading, with WshShell object, 5

registry keys, editing, 46–47
relationships, viewing in CIM Studio,

346
ReleaseKey method (Keyboard object),

498
releasing WshRemote object, 176
remote administration, enabling for

Windows Firewall, 360
remote scripting. See also deployed

scripts
ADSI queries, 163
alternate credentials, gaining access

with, 165
configuring for Windows Firewall,

170
configuring permissions for, 163–165
connections, types of, 163
connectivity and, 162–165
context and, 167–170
deployed script, 171
deployment script, 171
execution permissions, 165–167
FileSystemObject queries, 163
identity and, 165
objects designed for. See remote

scripting objects
permissions, 163–165
registry, modifying with, 169
with RunAs command, 165
script editors and, 516–517
scripts involved in, 171
security and, 167
security context and, 162
security layers and, 166
third-party applications for, 172
user profiles and, 167–170
WMI queries, 163

Privileges property (SwBemSecurity object)

531

remote scripting objects, 171. See also
WshController object

remote shutdown, granting rights to, 32
remoteable property (XML

<registration> tag), 98
RemoteAddresses object (Windows

Firewall), 363
RemoteAdministration object

(Windows Firewall), 363
RemoteAdminSettings object (Windows

Firewall), 362
RemoveConfigurationValue method

(VirtualServer.Application object),
487

removing certification authorities (CAs)
from trusted list, 45

reports, scripting for GPOs, 411
RequiredAssocQualifier=qualifier

keyword (ASSOCIATORS OF
query), 272

RequiredQualifier=qualifier keyword
(ASSOCIATORS OF query), 272

Reset buttons in forms, why not to use,
149

Reset method (VirtualMachine object),
493

ResolutionState property (Alert object),
471

resource IDs, case sensitivity of, 64
<resource> tag (XML), 63–64, 99
response scripts (Microsoft Operations

Manager), 473
RestoreGPO method (gpmDomain

object), 412–413
restores, GPO, 412–413
restricting Select queries, 31–32
restricting software. See Software

Restriction Policies (SRP)
Result method (gpmResult object), 412
Resultant Set of Policies (RSOP),

413–414
ResultClass=classname keyword

(ASSOCIATORS OF query), 272
Resume method (VirtualMachine

object), 493
resuming print queues, 381
reusing code. See Windows Script

Components (WSCs)
reusing functions/subroutines, 63
right-clicking HTAs, setting behavior

when, 142
rolling back virtual machines, 498–500
rows, database

adding, 201–202
adding, with dynamic recordsets, 188
changing data in, 201
defined, 181

RSOP (Resultant Set of Policies),
413–414

run-time parameters
Boolean, 77
named. See named parameters
for Popup method, 5
specifying, with Windows Script Files

(WSFs), 61, 65
validating, 68
Windows Script Files (WSFs) and, 61,

65
run-time syntax, validating, 64
RunAs command

alternate credentials with, 52
remote scripting with, 165
syntax, 52

running scripts
with alternate credentials. See

alternate credentials
with CScript, 7
preventing. See Software Restriction

Policies (SRP)
as service, 317
trusted only, 46
user input, requesting during, 11–12
under user’s security context, 170

running WBEMTest, 268
<runtime> tag (XML), 60

S
SAM (Security Accounts Manager)

names, setting, 210
sAMAccountName, 25
SAPIEN PrimalScript, 51, 172

adding methods/properties in, 115
creating script with, 350
creating Windows Script

Components (WSCs) with,
112–117

creating Windows Script Files with,
68–72

debugging with, 514
editing scripts in, 351
Remote Script Execution Engine

(RSEE), 517
snippets in, 508–509
WSC support, 518
WSF support, 518

SAPIEN PrimalScript Professional,
225–226

Save method (VirtualMachine object),
493

scanning event logs, 264–265
scheduled tasks, running under

alternate credentials, 53

Schema snap-in (Active Directory),
registering, 251

Schtasks command, 53
scope filters, 477
Scope object (Windows Firewall), 363
Scope of Management (SOM), 405–406
Script Component Wizard, 101–105

downloading, 100
location of, 101

script components, Windows. See
Windows Script Components
(WSCs)

script editors, 38
block formatting in, 518
case correction by, 506
code completion in, 509–510
code hinting in, 509–510
debugging in, 513–514
downloading, 519
enterprise features, 514–515
extensibility of, 513
features included by, 506–507
indenting in, 506–507
PrimalScript Professional, 225–226
remote scripting and, 516–517
SAPIEN PrimalScript. See SAPIEN

PrimalScript
security features in, 515–516
shortcuts in, 507
snippets in, 508–509
for Windows Script Files (WSFs),

68–72
wizards in, 510–513
for XML, 68–72

script encoding, 41–42. See also
Microsoft Script Encoder

decoding tools, 42
limitations of, 42
safety of, 42

script jobs (Windows Script Files),
62–63

script libraries, adding, 94
script security

code signing. See code signing
deleting wscript.exe/cscript.exe,

ineffectiveness of, 41
encoding scripts for. See script

encoding
reassigning filename extensions,

ineffectiveness of, 41
signing code. See code signing
Software Restriction Policies (SRP)

and, 52
script signing. See code signing
<script> tag (XML), 62, 98
script tracing, 473
ScriptContext, 465–466

ScriptContext

532

scripting
Exchange storage groups, 436–441
ExchangeServerState class (WMI),

435–436
extended rights, 240
GPO backups, 412
GPO permissions, 407–410
GPO reports, 411
GPO restores, 412–413
MOM (Microsoft Operations

Manager). See MOM (Microsoft
Operations Manager);
ScriptContext

in Notepad, 505
remote. See remote scripting
RSOP (Resultant Set of Policies),

413–414
security, 240
Windows Firewall, vs. Group Policy,

360
Scriptomatic, 126–128. See also ADSI

Scriptomatic
connecting to WMI namespaces with,

321
saving scripts in, 325
script output format, choosing, 323
starting, 320
WMI classes, displaying, 320

scripts
aborting, 20, 292
adding scope filters to, 477
adding to MOM (Microsoft

Operations Manager), 466
for changing administrator password,

26
changing HTML tags with, 131
color coding, 38
connecting buttons to, 149–150
for connecting to remote system with

alternate credentials, 33
converting to Windows Script Files

(WSFs), 72–79
creating Web sites with, 375–378
debugging, 134, 473
defining regions in, 518
deployed, 171
directory service interface. See ADSI

(Active Directory Services
Interface)

displaying output in HTML, 136
editing, in MOM (Microsoft

Operations Manager), 466
editing, in SAPIEN PrimalScript, 351
error handling. See error handling
error status, checking, 137
executing. See running scripts
graphical input options. See InputBox

function

help message, setting, 65–66
looping, 15–16
for managing users/groups. See ADSI

(Active Directory Services
Interface)

modularity of, 140
in MOM (Microsoft Operations

Manager), 467, 473–478, 478–479,
481

for opening text files. See text files,
opening

packaging, 516–517. See Windows
Script Files (WSFs)

progress feedback, displaying, 21
for provisioning, 490
remote. See remote scripting
as response to event in MOM

(Microsoft Operations Manager),
473

with robust user interface. See HTAs
(HTML applications)

running. See running scripts
saving, in Scriptomatic, 325
security of. See script security
storing information across sessions.

See ScriptState object
storing state variables in, 474–476
techniques, deciding on appropriate,

39
timed to run with Microsoft

Operations Manager (MOM)
events, 474

trusted, 46
untrusted, setting warning message

for, 47
user messages, creating, 9
validating input, 12
for virtual machine management,

492–496
wrapper, 354–355
writing results to command window,

21
Scripts folder, 394
ScriptState object, 474, 476
scroll attribute (HTAs), 142
scrollbars in HTAs, hiding/displaying,

142
scrollflat attribute (HTAs), 142
SDK (ADSI Software Development Kit),

217. See also ADSCmd; ADSVW
search filters on LDAP queries, 227
SearchBackups method (gpmBackupDir

object), 413
searching

Active Directory, 257
CIM Studio, for WMI classes, 345

security
cross-frame, disabling, 146

of HTAs (HTML applications), 126,
128

privileges, list of, 275–276
remote scripting and, 167
in script editors, 515–516
scripting, 240
scripts. See script security
Windows Script Components

(WSCs) and, 98
Security Accounts Manager (SAM)

names, setting, 210
security context, 162
security groups, 211. See also group

accounts
security layers, 166
Security_ property (SWBemLocator

object), 274–276
Select Case statement, 11
SELECT * FROM Users statement, why

not preferred, 186
Select queries, restricting, 31–32
SELECT query (SQL), 197
selection attribute (HTAs), 143
self-signed certificates, 49
semisynchronous notification queries,

291–294
Server service, connecting to, 230
servers, Exchange. See Exchange servers
ServerState property

(ExchangeServerState class), 435
service dependencies, 267
services

running scripts as, 317
stopping, in WBEMTest, 290

Services object (Windows Firewall), 362
SetConfigurationValue method

(VirtualServer.Application object),
487

SetInfo method, 26
SetPassword method, 26, 27
showintaskbar attribute (HTAs), 143
ShowUsage method, 64

bracketed parameters in, 67
optional parameters in, 67
setting text displayed for, 65–66

ShutDown method (GuestOS object),
498

shutdown, remote, 32
signing scripts. See code signing
Simple Network Management Protocol

(SNMP), 356
singleinstance attribute (HTAs), 143
sinks. See event sinks
Sleep method (ScriptContext object),

465
snippets, 508–509
SNMP (Simple Network Management

Protocol), 356

scripting

533

Software Restriction Policies (SRP), 52
Sort property (ADO Recordset object),

190
source-control software, 515
Source property (ADO Recordset

object), 250
 tag, 144–145
Split function, 22
SQL

case sensitivity of, 197
JOIN clause. See JOIN clause (SQL)
ORDER BY clause. See ORDER BY

clause (SQL)
queries. See SQL queries
SELECT * FROM Users statement,

why not preferred, 186
TOP clause, 198–199
WHERE clause, 197–198

SQL queries
combining data from two tables. See

JOIN clause (SQL)
creating recordsets from joined tables,

200
DELETE, 201
INSERT, 201–202
with JOIN clauses, column name

prefixes in, 200
limiting rows returned by, 197–198
returning specific number/percentage

of, 198–199
string literals, case sensitivity of, 249
UPDATE, 201

SQL Server
connection strings to, 185
databases, as data sources, 196–197
ODBC DSN wizard, 183

SRP (Software Restriction Policies), 52
Startup method (VirtualMachine

object), 493
State property (ADO Recordset object),

190, 250
State property (VirtualMachine object),

494–495
state variable scripts (MOM), 474–476
static recordsets, 189
Status property (ADO Recordset object),

250
Status property (WshRemote object),

172
StdOut method (Wscript object), 21
stopping services in WBEMTest, 290
storage groups, Exchange

binding to server, 439
creating, 438–440
deleting, 440–441
listing, 437–438
listing all, 428–429

naming, 439
properties of, 438
saving, 440
scripting, 436–441
viewing full URL, 439

stored procedures
Command objects and, 192
defined, 191–192
listing all in database, 194
parameterized, 192

string literals, case sensitivity of, 249
string variables

filtering ADO queries with, 258
queries in, 248

Submit method (ScriptContext object),
465

subroutines
adding to HTAs, 151–152
commonly used, looping in external

file, 152
handling VBScript events with, 173
naming, 132
reusing, 63

Supports method (ADO Recordset
object), 190

suspending virtual machines, 493
SWbemLocator object, 32–33

creating, 32
ImpersonationLevel, setting, 32
user privileges, setting, 32
vs. winmgmgts, 273

symmetric keys, 42
sysmenu attribute (HTAs), 143
system properties, hiding in WBEMTest,

343

T
tables, database, 180

deleting, 201
joined, using SQL queries to create

recordsets from, 200
retrieving all rows/columns from. See

SELECT query (SQL)
tables, HTML, formatting WMIC output

as, 335
tags, HTML. See also specific tags

changing with scripts, 131
children collection, 130
events for, 131
hierarchy, 130–131
id attribute, 131
innerHTML property, 130
nested, 130. See also DOM
parentElement property, 130
as programmable objects, 130–131
WYSIWYG editors for, 147

tags, XML. See also specific tags
closing, 58
in WSC files, 97–99

tail method, 123
TargetComputer property

(ScriptContext object), 465
TargetComputerIdentity property

(ScriptContext object), 465
TargetFQDNComputer property

(ScriptContext object), 466
TargetNetbiosComputer property

(ScriptContext object), 466
Task Scheduler, 53
tasks, scheduled, 53
temporary consumers. See consumers
Terminate method (WshRemote

object), 173
testing

ADO, for group membership,
256–259

LDAP queries, 222
queries, 343. See also WBEMTest

testvaluelist XSL file, 335
text areas (HTML), 147
text boxes (HTML), 147
text files

closing, 16
connection strings to, 185, 195
creating, 16–17
as data sources, 195
delimiting, 195
opening, 15–16, 16, 176
overwriting previous versions, 16–17
reading, 15–16

timed scripts (Microsoft Operations
Manager), 474

TOP clause (SQL), 198–199
tracing scripts, 473
transform files. See XSL files
troubleshooting

GPO backups, 412
ScriptState object, 476
WshController object, 174

trust provider, Active Directory,
373–374

trusted certification authorities (CAs),
44

implications of trust, 45
removing from list, 45

trusted scripts, 46
TrustPolicy, 5. See also code signing

administrative template, 47
computer-wide settings, 46–47
configuring with Group Policy, 47–49
default setting, 46
enabling/disabling, 47
overriding per-user settings, 47

TrustPolicy

534

TrustPolicy (continued)
preferences, 49
template, 47
user-specific settings, 46
user-specific settings, overriding, 47

TurnOff method (VirtualMachine
object), 493

type libraries, 107
accessing, 61
generating, for Windows Script

Components (WSCs), 107
Type object (Windows Firewall), 362
TypeAsciiText method (Keyboard

object), 498
TypeKeysSequence method (Keyboard

object), 498
types, Boolean, 66

U
UBound function, 22
underscore characters as wildcards, 267
undo disks, 493, 500
Undoable property (VirtualMachine

object), 495
UndoAction property (VirtualMachine

object), 495
Unreachable property

(ExchangeServerState class), 435
unregistering Windows Script

Components (WSCs), 121
UnregisterVirtualMachine method

(VirtualServer.Application object),
486

UnregisterVirtualNetwork method
(VirtualServer.Application object),
486

untrusted code, 43, 47
untrusted scripts, setting warning

message for, 47
UPDATE query (SQL), 201
user accounts

alternate, running scripts with. See
alternate credentials

creating, 28–29, 210
group. See group accounts
group membership, testing for with

ADO and ADSI, 256–259
listing all local, with WMI, 261
for remote access, 165

user interface, robust. See HTAs (HTML
applications)

user messages, creating, 9
user names

displaying common, 25
displaying full, 9

user privileges, setting, 32

user profiles, 167
modifying, with remote scripting, 169
remote scripting and, 167–170
remotely modifying with logon

scripts, 170
username property, 9
users

adding, with PrimalScript
Professional, 226

common name, displaying, 25
connecting to, 240
creating, 27
full name, displaying, 9
listing all in domain, 25
passwords, specifying, 27

utilities, parsing output of, 6–7

V
validating

arguments, 78
domain controllers, 412–413
folder paths, 19
log files, 19
run-time parameters, 68
run-time syntax, 64
script input, 12

variables, 474–476
varSet object, 475, 476
vbInformation constant, 5
vbOkOnly constant, 5
VBScript

error handling. See error handling
events in, 173
graphical application. See HTAs

(HTML applications)
version attribute (HTAs), 143
Version property (ExchangeServerState

class), 435
version property (XML <registration>

tag), 98
virtual directory, IIS, 374–376
virtual disks, 484
virtual machines

clicking mouse button in, 498
configurations, 486
configuring, 488–489, 490
creating, 488
defined, 484
differencing disks, 486
DVD-ROM drives, adding, 488
DVD-ROM images, attaching, 488
dynamic disks, 488, 496
enumerating through all, 491
guest operating systems, 484
GuestOS object, 497–498
hard disk properties, modifying, 489

HardDisk object, 496–497
hardware emulation, 485
initial configuration, 488–489
key identifiers, 498
keyboard tasks, 498
launch delay, setting, 494
listing all, 495
management scripts, 492–496
memory allocation, configuring, 494
mouse tasks, 498
multiple, managing, 491–492
network adapters, attaching, 489
operating system compatibility, 484
resetting, 493
resources, 486
rolling back multiple, 498–500
saved state, managing, 493
saving current state, 493
script wrappers for, 491–492
sessions, 486
starting, 489
suspending, 493
turning off, 493, 499
undo disks, 493, 500

Virtual Server
Additions version, checking, 497
API, 483, 484–485, 487
architecture, 486
available capacity, checking, 487
capabilities of, 484–485
COM object, instantiating, 499
host operating system, defined, 484
launch delay, setting, 494
object model, 486–487
object references, obtaining, 491
virtual machines. See virtual machines
virtual networks, 486

VirtualMachine object
methods, 492–493
returning, 499

VirtualMachines method
(VirtualServer.Application object),
487

VirtualNetworks method
(VirtualServer.Application object),
487

VirtualServer.Application object,
486–487

W
WaitOnReturn variable, 6
WBEMTest

authentication, enabling, 342
authority, enabling, 342
connecting to namespace in, 341

TurnOff method (VirtualMachine object)

535

connection information, specifying,
288–289

creating notification queries in,
288–291

enabling privileges in, 288, 341
enumerating instances, 343
executing queries in, 343
impersonation level, specifying, 341
Kerberos authentication, 342
running, 268
starting, 341
stopping services in, 290
system properties, hiding, 343
testing queries in, 268–269
viewing event properties in, 290

Web pages, vs. HTAs (HTML
applications), 141

Web sites
bindings, 376
configuring, with IIS, 377
creating, with scripts, 375–378

WHERE clause (ASSOCIATORS OF
query), 272

WHERE clause (SQL), 197–198
WHERE clause (WQL)

increasing efficiency with, 263–265
LIKE operator, 265–267
multiple conditions in, 265
quotation marks in, 264
wildcards, specifying, 265–267

WHERE queries (WMI) in command
line, 333

wildcards
specifying in WQL WHERE clauses,

265–267
underscore characters as, 267

Win32_DependentService class, 267
Win32_DiskQuota class (WMI), 364
Win32_PingStatus class (WMI),

356–359
Win32_Printer class (WMI), 381
Win32_PrinterDriver class (WMI), 384
Win32_QuotaSetting class (WMI),

364–365
Win32_TCPIPPrinterPort class (WMI),

383
Windows Firewall

authorizing applications in, 361
configuring, 359–363
exceptions, allowing, 362
ICMP settings, retrieving, 362
instantiating manager object, 360
open ports, listing, 359
ports, opening, 361
profile, retrieving, 362
remote addresses, enabling

connection authorization for, 361

remote administration, enabling, 360
remote administration settings, 363
remote scripting, configuring for, 170
scripting, vs. Group Policy, 360
services, retrieving, 362

windows, hiding, 6
Windows Management Instrumentation

(WMI). See WMI (Windows
Management Instrumentation)

Windows Script Components (WSCs)
building, with Script Component

Wizard. See Script Component
Wizard

characteristics, defining, 101
comments in, 99, 120
creating, with PrimalScript editor,

112–117
defining, 101–102
events, 103, 108
firing events in, 98
flagging events in, 98
functions, specifying internal names

for, 107
get command, 333–334
GUID, generating, 97
methods, 107
methods, defining, 102
methods in, 121
objects, 99, 114, 121, 122
properties, 102, 105–106, 120
registering, 97–98, 121
remote instances, creating, 98
script errors, displaying to user, 97
security and, 98
sinks. See event sinks
skeleton outline for, 99
tags in, 97–99
template for. See Script Component

Wizard
type libraries, generating, 107
unregistering, 121
using in script, 122
viewability of, 98

Windows Script Files (WSFs), 57–58.
See also XML

child objects, creating, 62
comments, 59, 60
converting scripts into, 69–72
enforcing XML rules, 58
executing specific job in, 59
forcing strict XML parsing, 58
help information, 60
jobs, 59
multiple scripts in, 63
named arguments, 60
named parameters. See named

parameters

objects, creating, 61–62
resources, adding, 63–64
run-time features, 60
run-time parameters, 61, 65
saving results to text file, 77
script editors for, 68–72
script jobs, 62–63, 63
script libraries, adding, 94
scripts, 77, 82–83
syntax examples, displaying, 60
as wrapper scripts, 83–84
XML formatting, 58

Windows Script Host (WSH), 4. See also
TrustPolicy

Windows Server 2003, WMI classes
omitted by, 356

Windows services, dependencies
between, 267

Windows Task Scheduler, 53
Windows taskbar, displaying HTAs in,

143
Windows Update Services, 385–388
windowstate attribute (HTAs), 143
Winmgmts object, 30–31
WinNT provider, 24, 230–240

case sensitivity of, 25
connecting to remote systems, 26
continuing relevance of, 231

WITHIN clause (WQL), 288
wizards, in script editors, 510–513
wizards, WMI, 349–351. See also

AdminScriptEditor WMI Wizard;
SAPIEN PrimalScript

WMI Command Line (WMIC). See
WMIC (WMI Command Line)

WMI Event Registration
alternate credentials with, 301
connecting to namespace in, 301
consumers in, 303
starting, 301

WMI Event Viewer, 305, 306
WMI Object Browser, 347–349
WMI queries

remote, 163
running in CIM Studio, 346

WMI Query Language (WQL). See WQL
WMI Source button, 324
WMI (Windows Management

Instrumentation), 29–30
aliases, viewing information on, 332
alternate credentials for, 54
associator classes, 267
authentication levels, 274
backslashes in, 276
blocking. See blocking
CIM Studio. See CIM Studio
class attributes, missing, 31

WMI (Windows Management Instrumentation)

536

WMI (continued)
classes. See classes, WMI
command-line tool. See WMI

Command Line (WMIC)
connecting to namespaces, 30
disk quota management. See disk

quotas
DNS provider. See DNS provider
enabling privileges in, 275–276
events, 285–286
list command, 333
listing all local user accounts with,

261
managing file permissions with,

276–280
namespaces, connecting to with

Scriptomatic, 321
objects, browsing. See WMI Object

Browser
properties, 31, 262–263
queries, 31–32. See also WMI Query

Language (WQL)
remote access, Windows Firewall

settings for, 170
script blocking. See blocking
security layer, adminstering, 166
SNMP provider, installing, 356
wizards, 349–351, 510

WMIC (WMI Command Line), 325
aliases, 326–331, 333
alternate credentials with, 332
in batch files, 337–341

connecting to namespaces with, 326
connecting to remote systems with,

332
/every switch, 333
get command, running at scheduled

intervals, 333–334
installing, 325
list command, 333–334
output. See XSL files
supplemental information on, 341
WHERE queries in, 333

workbooks, Excel. See Microsoft Excel
workbooks

WQL
WITHIN clause, 288
ISA operator, 287
queries, efficiency of, 262–265
WHERE clause, increasing efficiency

with, 263–265
wrapper scripts, 354–355, 491–492
wrapper Windows Script Files, 83–84
writing script results to command

window, 21
WScript object, registering as bug fix,

174
WSCs. See Windows Script Components

(WSCs)
WSFs (Windows Script Files). See

Windows Script Files (WSFs)
WSH. See Windows Script Host (WSH)
WshController object

avoiding dialog boxes with, 171

CreateScript method, 172, 174
declaring, 176
restrictions on, 171
troubleshooting, 174

WshNetwork object, 8
WshRemote object, 172–173

Error event handler, 177
Execute method, 173
releasing, 176
Status property, 172
Terminate method, 173

WshRemoteError object, 172
WshShell object, 4–7

button options, constants as, 14
Exec method, 248
hiding windows, 6
launching programs with, 5
Popup method, 4–5
reading registry with, 5

X
XML

closing tags, 58
enclosing scripts in CDATA tags, 58
enforcing, in Windows Script Files

(WSFs), 58
script editors for, 68–72

XSL files
creating, 336–337
formatting WMIC output with, 335

WMIC (WMI Command Line)

About the Authors
Don Jones is an independent author, consultant, and trainer. He is also one of the industry’s
leading experts on Windows scripting. Don owns and operates ScriptingAnswers.com. He
is a Microsoft Certified Systems Engineer (MCSE) and a Microsoft Most Valued Professional
(MVP). Don is the author of Microsoft Windows Administrator’s Automation Toolkit (Microsoft
Press, 2005), VBScript and WMI for Windows Administrators (Addison-Wesley Professional,
2004), and Managing Windows with VBScript and WMI (Addison-Wesley Professional, 2004).
He is also a co-author of the Microsoft Windows Server 2003 Resource Kit (Microsoft Press,
2005), and is a regular columnist for Redmond Magazine (formerly Microsoft Certified Profes-
sional Magazine).

Jeffery Hicks (MCSE, MCT, MCSA) is a Senior Network Engineer with Visory Group, a
Microsoft Gold Partner. He is also President and Principal Consultant of JDH Information
Technology Solutions. He has been in the IT industry for 15 years, doing everything from help
desk support to project management. He is a freelance technology writer and has developed
several training videos on administrative scripting. Jeff has been a frequent contributor to sev-
eral online IT community Web sites, as well as an invited speaker at computer conferences
and seminars. He is currently a Contributing Editor for ScriptingAnswers.com.

	Cover
	Copyright

	Contents at a Glance
	Table of Contents
	Acknowledgements
	Introduction
	Who Is This Book For?
	Conventions in This Book
	System Requirements
	About the Companion CD
	Support for This Book

	Part I The Basics of Advanced Windows Scripting
	Chapter 1 Getting Started
	Prerequisite Knowledge
	Understanding Windows Script Host Basics
	Using the FileSystemObject Library
	Understanding Arrays
	Understanding Active Directory Services Interface Fundamentals
	Understanding Windows Management Instrumentation Fundamentals

	Advanced Scripting Goals
	Securing Your Scripts
	Creating Your Own Script Components and Libraries
	Running Scripts Remotely
	Retrieving Information from Active Directory
	Manipulating Information Stored in a Database
	Managing Your Windows Environment with WMI Events
	Using New WMI Classes with Windows XP and Windows Server 2003
	Managing Group Policy Objects with Scripting
	Managing Your Exchange 2003 Environment
	Incorporating Your Scripts into Microsoft Operations Manager
	Creating a Visual Interface for Your Script with Internet Explorer and HTML Applications (HTAs)

	What We Won’t Cover
	Finding Information about JScript, Perl, Python, and KiXtart

	The Right Tool for the Job
	Scripting Techniques
	Summary

	Chapter 2 Script Security
	Script Encoding and Decoding
	Script Signing and the Windows Script Host TrustPolicy
	Understanding Digital Certificates and Script Signing
	Understanding WSH TrustPolicy
	Configuring WSH TrustPolicy in Your Environment
	Signing Scripts by Using a Digital Certificate
	Using Software Restriction Policies

	Alternate Credentials
	Using the RunAs Command
	Using Scheduled Tasks Credentials
	Using ADSI Alternate Credentials
	Using WMI Alternate Credentials

	Summary

	Part II Packaging Your Scripts
	Chapter 3 Windows Script Files
	Defining Windows Script Files
	Understanding XML
	The package Tag
	The comment Tag
	The job Tag
	The runtime Tag
	The description Tag
	The example Tag
	The named Tag
	The object Tag
	The script Tag

	Creating Script Jobs
	Including Other Scripts
	Adding Resources
	Creating Examples and Help Text
	Using Named Parameters
	The name Property
	The helpstring Property
	The type Property
	The required Property

	Viewing a Windows Script File in Action
	Converting an Existing Script to a WSF Utility
	Creating and Using a Wrapper WSF
	Summary

	Chapter 4 Windows Script Components
	Understanding COM Objects, Methods, and Properties
	Understanding Windows Script Components
	Using the Script Component Wizard
	Working with Properties
	Working with Methods
	Working with Events
	Creating a Windows Script Component with a Script Editor
	Viewing a Windows Script Component in Action
	Summary

	Chapter 5 HTML Applications: Scripts with a User Interface
	Understanding HTML Applications
	Understanding the Internet Explorer Document Object Model
	Understanding the HTML Document Hierarchy
	Understanding HTML Events
	Putting the DOM to Work

	Preparing Your HTA
	Using a Script Rather than an HTA
	Getting the Script Ready for an HTA

	Understanding HTA Requirements and Essentials
	Using HTA Tags
	Sizing an HTA
	Using <div> and Tags
	Using Inline Frames

	Working with Forms and Fields
	Populating a List Box
	Creating Buttons
	Connecting a Button to a Script
	Using Check Boxes and Radio Buttons
	Adding Graphics

	Adding Subroutines and Functions
	Viewing HTAs in Action
	Summary

	Part III Advanced Scripting Techniques, Tools, and Technologies
	Chapter 6 Remote Scripting
	Understanding Remote Scripting and Security
	Connectivity
	Identity
	Permissions
	Context

	Working with Windows Firewall
	Understanding Remote Scripting Objects
	Understanding Remote Scripting Methods
	Viewing Remote Scripting in Action
	Summary

	Chapter 7 Database Scripting
	Understanding ActiveX Data Objects
	Understanding Connection Objects
	ODBC DSN Connections
	Connection Strings

	Understanding Recordset Objects
	Forward-Only Recordsets
	Other Types of Recordsets
	Recordset Tips and Tricks

	Understanding Command Objects
	Understanding the Differences Between Databases
	Text Files
	Excel Workbooks
	Access Databases
	SQL Server Databases

	Understanding SQL
	Queries that Return Results
	Queries that Make Changes

	Viewing ActiveX Data Objects
	Summary

	Chapter 8 Advanced ADSI and LDAP Scripting
	Using the ADSI Scriptomatic
	Connecting to a Domain
	Creating Objects
	Retrieving Object Information

	Using Other ADSI Tools
	Using the ADSI Software Development Kit
	Using the PrimalScript Professional ADSI Wizard

	Writing Active Directory Queries
	Using Search Filters
	Using Data Return Limits

	Scripting the WinNT Provider
	Scripting Active Directory Security
	Summary

	Chapter 9 Using ADO and ADSI Together
	Understanding the ADSI Provider for ADO
	Connecting to ADSI by Using ADO
	Treating Active Directory as a Database
	Writing ADSI Queries to Retrieve Information
	Writing ADSI Queries to Make Changes
	Viewing ADO and ADSI in Action
	Summary

	Chapter 10 Advanced WMI Scripting
	Understanding Advanced WQL
	Selecting Specific Properties
	Including a WHERE Clause
	Using the LIKE Operator

	Using Queries and associator Classes
	Understanding Associations
	Writing Association Queries
	Using References Queries

	Using Advanced WMI Security Techniques
	Using the AuthenticationLevel Property
	Using the ImpersonationLevel Property
	Using the Privileges Property

	Viewing Advanced WMI Scripting in Action
	Summary

	Chapter 11 WMI Events
	Understanding WMI Events
	Understanding Consumers
	Understanding Notification Queries
	Understanding Filters
	Understanding Polling

	Using Notification Queries
	Using WBEMTest
	Executing a Notification Query Semisynchronously
	Executing a Notification Query Asynchronously
	Using Event Sinks

	Using WMI Tools
	Using WMI Event Registration
	Using WMI Event Viewer

	Viewing WMI Events in Action
	Summary

	Chapter 12 Better Scripting with WMI Tools
	Using Tools as a Scripting Shortcut
	Using Scriptomatic
	Listing Classes and Namespaces
	Generating Scripts
	Saving Scripts

	Using WMIC
	Connecting to Namespaces
	Using Aliases
	Connecting to Remote Systems
	Passing Credentials
	Making Queries with list and get
	Formatting Output
	Scripting with WMIC

	Using WBEMTest
	Connecting to a Namespace
	Enumerating Instances

	Using WMI Tools
	Using CIM Studio
	Using WMI Object Browser

	Comparing WMI Wizards
	Summary

	Chapter 13 Advanced Scripting in Windows XP and Windows Server 2003
	Using New and Discontinued WMI Classes
	Using the Win32_PingStatus Class
	Configuring the Windows Firewall
	Using Disk Quota Management
	Using the DNS Provider
	Using Active Directory Replication and Trusts
	Using Internet Information Services 6.0
	Managing Printing
	Using Windows Update Services
	Summary

	Part IV Scripting for the Enterprise
	Chapter 14 Group Policy Management Scripting
	Introducing Group Policy Management Scripting
	Group Policy Management Scripting Requirements
	Group Policy Management Console Object Model

	Scripting GPO Permissions
	Scripting GPO Reports
	Scripting GPO Backups
	Scripting GPO Restores
	Scripting Resultant Set of Policy
	Viewing GPO Scripting in Action
	Summary

	Chapter 15 Exchange 2003 Scripting
	Introducing Exchange Scripting
	Querying Active Directory
	Understanding Exchange 2003 WMI Classes
	Scripting the Exchange Server State Class
	Scripting Exchange Storage Groups
	Scripting Exchange Mailboxes
	Viewing Exchange Server Scripting in Action
	Summary

	Chapter 16 Microsoft Operations Manager 2005 Scripting
	Introducing MOM Scripting
	Adding Scripts
	Defining Script Parameters
	Using Run Time Scripting Objects
	Understanding Script Tracing and Debugging

	Using Scripts in MOM
	Using Response Scripts
	Using Timed Scripts
	Using State Variable Scripts
	Using Discovery Scripts

	Customizing MOM Scripts
	Viewing MOM Scripting in Action
	Summary

	Chapter 17 Virtual Server 2005 Scripting
	Introducing Virtual Server Scripting
	Understanding the Virtual Server Object Model
	Writing Provisioning Scripts
	Writing Management Scripts
	Obtaining Object References
	Managing Multiple-Virtual-Machine Templates
	Performing Virtual Machine Tasks
	Performing Virtual Disk Tasks
	Performing Guest OS Tasks
	Performing Mouse and Keyboard Tasks

	Viewing Virtual Server Scripting in Action
	Summary

	Part V Appendix
	Appendix A Advanced Script Editor Features
	Universal Features
	Keyboard Shortcuts
	Script Snippets
	Code Hinting and Completion
	Wizards
	Debugging
	Enterprise Features
	Security Features
	Script Deployment and Remote Scripting
	WSF and WSC Support
	Other Features
	Where to Get the Software

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	About the Authors

